IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v78y2013i4p740-768.html
   My bibliography  Save this article

Nonlinear Regime-Switching State-Space (RSSS) Models

Author

Listed:
  • Sy-Miin Chow
  • Guangjian Zhang

Abstract

Nonlinear dynamic factor analysis models extend standard linear dynamic factor analysis models by allowing time series processes to be nonlinear at the latent level (e.g., involving interaction between two latent processes). In practice, it is often of interest to identify the phases—namely, latent “regimes” or classes—during which a system is characterized by distinctly different dynamics. We propose a new class of models, termed nonlinear regime-switching state-space (RSSS) models, which subsumes regime-switching nonlinear dynamic factor analysis models as a special case. In nonlinear RSSS models, the change processes within regimes, represented using a state-space model, are allowed to be nonlinear. An estimation procedure obtained by combining the extended Kalman filter and the Kim filter is proposed as a way to estimate nonlinear RSSS models. We illustrate the utility of nonlinear RSSS models by fitting a nonlinear dynamic factor analysis model with regime-specific cross-regression parameters to a set of experience sampling affect data. The parallels between nonlinear RSSS models and other well-known discrete change models in the literature are discussed briefly. Copyright The Psychometric Society 2013

Suggested Citation

  • Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
  • Handle: RePEc:spr:psycho:v:78:y:2013:i:4:p:740-768
    DOI: 10.1007/s11336-013-9330-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9330-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9330-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Molenaar, 1985. "A dynamic factor model for the analysis of multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 181-202, June.
    2. Conor Dolan & Han Maas, 1998. "Fitting multivariage normal finite mixtures subject to structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 227-253, September.
    3. Manshu Yang & Sy-Miin Chow, 2010. "Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 744-771, December.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    5. Jackson, Christopher, 2011. "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i08).
    6. E. Hamaker & R. Grasman, 2012. "Regime Switching State-Space Models Applied to Psychological Processes: Handling Missing Data and Making Inferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 400-422, April.
    7. Yiu-Fai Yung, 1997. "Finite mixtures in confirmatory factor-analysis models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 297-330, September.
    8. Steven Boker & Michael Neale & Hermine Maes & Michael Wilde & Michael Spiegel & Timothy Brick & Jeffrey Spies & Ryne Estabrook & Sarah Kenny & Timothy Bates & Paras Mehta & John Fox, 2011. "OpenMx: An Open Source Extended Structural Equation Modeling Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 306-317, April.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Geweke, John F & Singleton, Kenneth J, 1981. "Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 37-54, February.
    11. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    2. Sy-Miin Chow & Zhaohua Lu & Andrew Sherwood & Hongtu Zhu, 2016. "Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 102-134, March.
    3. Sy-Miin Chow & Lu Ou & Arridhana Ciptadi & Emily B. Prince & Dongjun You & Michael D. Hunter & James M. Rehg & Agata Rozga & Daniel S. Messinger, 2018. "Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 476-510, June.
    4. Zhao-Hua Lu & Sy-Miin Chow & Nilam Ram & Pamela M. Cole, 2019. "Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 611-645, June.
    5. Sy-Miin Chow & Jungmin Lee & Abe D. Hofman & Han L. J. Maas & Dennis K. Pearl & Peter C. M. Molenaar, 2022. "Control Theory Forecasts of Optimal Training Dosage to Facilitate Children’s Arithmetic Learning in a Digital Educational Application," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 559-592, June.
    6. Augustin Kelava & Pascal Kilian & Judith Glaesser & Samuel Merk & Holger Brandt, 2022. "Forecasting Intra-individual Changes of Affective States Taking into Account Inter-individual Differences Using Intensive Longitudinal Data from a University Student Dropout Study in Math," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 533-558, June.
    7. Rosen, Karol & Angeles-Camacho, César & Elvira, Víctor & Guillén-Burguete, Servio Tulio, 2023. "Intra-hour photovoltaic forecasting through a time-varying Markov switching model," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel M. Smith & Theodore A. Walls, 2021. "Pursuing Collective Synchrony in Teams: A Regime-Switching Dynamic Factor Model of Speed Similarity in Soccer," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 1016-1038, December.
    2. Sy-Miin Chow & Lu Ou & Arridhana Ciptadi & Emily B. Prince & Dongjun You & Michael D. Hunter & James M. Rehg & Agata Rozga & Daniel S. Messinger, 2018. "Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 476-510, June.
    3. E. Hamaker & R. Grasman, 2012. "Regime Switching State-Space Models Applied to Psychological Processes: Handling Missing Data and Making Inferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 400-422, April.
    4. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    5. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    6. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    7. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    8. Nigar Hashimzade & Oleg Kirsanov & Tatiana Kirsanova & Junior Maih, 2024. "On Bayesian Filtering for Markov Regime Switching Models," Papers 2402.08051, arXiv.org.
    9. Monica Billio & Roberto Casarin, 2008. "Identifying Business Cycle Turning Points with Sequential Monte Carlo Methods," Working Papers 0815, University of Brescia, Department of Economics.
    10. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    11. Rokas Gylys & Jonas Šiaulys, 2020. "Estimation of Uncertainty in Mortality Projections Using State-Space Lee-Carter Model," Mathematics, MDPI, vol. 8(7), pages 1-23, June.
    12. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    13. Tatsuma Wada & Pierre Perron, 2005. "Trend and Cycles: A New Approach and Explanations of Some Old Puzzles," Computing in Economics and Finance 2005 252, Society for Computational Economics.
    14. Fiorentini, G. & Planas, C. & Rossi, A., 2012. "The marginal likelihood of dynamic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2650-2662.
    15. Augustin Kelava & Pascal Kilian & Judith Glaesser & Samuel Merk & Holger Brandt, 2022. "Forecasting Intra-individual Changes of Affective States Taking into Account Inter-individual Differences Using Intensive Longitudinal Data from a University Student Dropout Study in Math," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 533-558, June.
    16. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
    17. He, Hui & Yang, Jiawen, 2011. "Regime-switching analysis of ADR home market pass-through," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 204-214, January.
    18. John R. Freeman & Jude C. Hays & Helmut Stix, 1999. "Democracy and Markets: The Case of Exchange Rates," Working Papers 39, Oesterreichische Nationalbank (Austrian Central Bank).
    19. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    20. Jaehee Kim & Sooyoung Cheon, 2010. "A Bayesian regime‐switching time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 365-378, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:78:y:2013:i:4:p:740-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.