IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v56y2019i4d10.1007_s12597-019-00400-4.html
   My bibliography  Save this article

Portfolio optimization using Laplacian biogeography based optimization

Author

Listed:
  • Vanita Garg

    (Galgotias University)

  • Kusum Deep

    (Indian Institute of Technology, Roorkee)

Abstract

Portfolio optimization is defined as the most appropriate allocation of assets so as to maximize returns subject to minimum risk. This constrained nonlinear optimization problem is highly complex due to the presence of a number of local optimas. The objective of this paper is to illustrate the effectiveness of a well-tested and effective Laplacian biogeography based optimization and another variant called blended biogeography based optimization. As an illustration the model and solution methodology is implemented on data taken from Indian National Stock Exchange, Mumbai from 1st April, 2015 to 31st March, 2016. From the analysis of results, it is concluded that as compared to blended BBO, the recently proposed LX-BBO algorithm is an effective tool to solve this complex problem of portfolio optimization with better accuracy and reliability.

Suggested Citation

  • Vanita Garg & Kusum Deep, 2019. "Portfolio optimization using Laplacian biogeography based optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 56(4), pages 1117-1141, December.
  • Handle: RePEc:spr:opsear:v:56:y:2019:i:4:d:10.1007_s12597-019-00400-4
    DOI: 10.1007/s12597-019-00400-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00400-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00400-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Chiodi & Renata Mansini & Maria Speranza, 2003. "Semi-Absolute Deviation Rule for Mutual Funds Portfolio Selection," Annals of Operations Research, Springer, vol. 124(1), pages 245-265, November.
    2. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    3. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    4. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    5. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    6. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    7. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mousumi Banerjee & Vanita Garg & Kusum Deep, 2023. "Solving structural and reliability optimization problems using efficient mutation strategies embedded in sine cosine algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 307-327, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    2. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    3. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    4. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    5. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    6. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    7. X. Cui & X. Zheng & S. Zhu & X. Sun, 2013. "Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1409-1423, August.
    8. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    9. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    10. Cristiano Arbex Valle, 2024. "Portfolio optimisation: bridging the gap between theory and practice," Papers 2407.00887, arXiv.org, revised Sep 2024.
    11. Mike G. Tsionas & Dionisis Philippas & Constantin Zopounidis, 2023. "Exploring Uncertainty, Sensitivity and Robust Solutions in Mathematical Programming Through Bayesian Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 205-227, June.
    12. Garud Iyengar & Alfred Ma, 2013. "Fast gradient descent method for Mean-CVaR optimization," Annals of Operations Research, Springer, vol. 205(1), pages 203-212, May.
    13. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    14. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    15. Todor Stoilov & Krasimira Stoilova & Miroslav Vladimirov, 2021. "Explicit Value at Risk Goal Function in Bi-Level Portfolio Problem for Financial Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    16. Philipp Baumann & Norbert Trautmann, 2013. "Portfolio-optimization models for small investors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 345-356, June.
    17. Jongbin Jung & Seongmoon Kim, 2017. "Developing a dynamic portfolio selection model with a self-adjusted rebalancing method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 766-779, July.
    18. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    19. Alexander Vinel & Pavlo Krokhmal, 2014. "On Valid Inequalities for Mixed Integer p-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 439-456, February.
    20. Zheng, Xiaojin & Sun, Xiaoling & Li, Duan & Cui, Xueting, 2012. "Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 221(1), pages 38-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:56:y:2019:i:4:d:10.1007_s12597-019-00400-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.