IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v152y2007i1p227-25610.1007-s10479-006-0142-4.html
   My bibliography  Save this article

Conditional value at risk and related linear programming models for portfolio optimization

Author

Listed:
  • Renata Mansini
  • Włodzimierz Ogryczak
  • M. Speranza

Abstract

Many risk measures have been recently introduced which (for discrete random variables) result in Linear Programs (LP). While some LP computable risk measures may be viewed as approximations to the variance (e.g., the mean absolute deviation or the Gini’s mean absolute difference), shortfall or quantile risk measures are recently gaining more popularity in various financial applications. In this paper we study LP solvable portfolio optimization models based on extensions of the Conditional Value at Risk (CVaR) measure. The models use multiple CVaR measures thus allowing for more detailed risk aversion modeling. We study both the theoretical properties of the models and their performance on real-life data. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
  • Handle: RePEc:spr:annopr:v:152:y:2007:i:1:p:227-256:10.1007/s10479-006-0142-4
    DOI: 10.1007/s10479-006-0142-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0142-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0142-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    2. Luca Chiodi & Renata Mansini & Maria Speranza, 2003. "Semi-Absolute Deviation Rule for Mutual Funds Portfolio Selection," Annals of Operations Research, Springer, vol. 124(1), pages 245-265, November.
    3. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    4. William F. Sharpe, 1971. "Mean-Absolute-Deviation Characteristic Lines for Securities and Portfolios," Management Science, INFORMS, vol. 18(2), pages 1-13, October.
    5. Włodzimierz Ogryczak, 2000. "Multiple criteria linear programming model for portfolio selection," Annals of Operations Research, Springer, vol. 97(1), pages 143-162, December.
    6. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    7. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2002. "CVaR models with selective hedging for international asset allocation," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1535-1561, July.
    8. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    9. Sharpe, William F., 1971. "A Linear Programming Approximation for the General Portfolio Analysis Problem," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1263-1275, December.
    10. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    11. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-185, March.
    12. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    13. Hans Kellerer & Renata Mansini & M. Speranza, 2000. "Selecting Portfolios with Fixed Costs and Minimum Transaction Lots," Annals of Operations Research, Springer, vol. 99(1), pages 287-304, December.
    14. Levy, Haim & Kroll, Yoram, 1978. "Ordering Uncertain Options with Borrowing and Lending," Journal of Finance, American Finance Association, vol. 33(2), pages 553-574, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    2. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    3. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    4. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    5. Wlodzimierz Ogryczak & Michał Przyłuski & Tomasz Śliwiński, 2017. "Efficient optimization of the reward-risk ratio with polyhedral risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 625-653, December.
    6. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    7. Adam Krzemienowski, 2009. "Risk preference modeling with conditional average: an application to portfolio optimization," Annals of Operations Research, Springer, vol. 165(1), pages 67-95, January.
    8. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    9. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    10. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    11. Philippe Delquié, 2012. "Risk Measures from Risk-Reducing Experiments," Decision Analysis, INFORMS, vol. 9(2), pages 96-102, June.
    12. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    13. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    14. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev, 2023. "Enhancing CVaR portfolio optimisation performance with GAM factor models," Papers 2401.00188, arXiv.org.
    15. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    16. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    17. Garud Iyengar & Alfred Ma, 2013. "Fast gradient descent method for Mean-CVaR optimization," Annals of Operations Research, Springer, vol. 205(1), pages 203-212, May.
    18. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    19. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    20. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:152:y:2007:i:1:p:227-256:10.1007/s10479-006-0142-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.