IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.00887.html
   My bibliography  Save this paper

Portfolio optimisation: bridging the gap between theory and practice

Author

Listed:
  • Cristiano Arbex Valle

Abstract

Portfolio optimisation is widely acknowledged for its significance in investment decision-making. Yet, existing methodologies face several limitations, among them converting optimal theoretical portfolios into real investment is not always straightforward. Several classes of exogenous (real-world) constraints have been proposed in literature with the intent of reducing the gap between theory and practice, which have worked to an extent. In this paper, we propose an optimisation-based framework which attempts to further reduce this gap. We have the explicit intention of producing portfolios that can be immediately converted into financial holdings. Our proposed framework is generic in the sense that it can be used in conjunction with any portfolio selection model, and consists of splitting the portfolio selection problem into two-stages. The main motivation behind this approach is in enabling automated investing with minimal human intervention, and thus the framework was built in such a way that real-world market features can be incorporated with relative ease. Among the novel contributions of this paper, this is the first work, to the best of our knowledge, to combine futures contracts and equities in a single framework, and also the first to consider borrowing costs in short positions. We present extensive computational results to illustrate the applicability of our approach and to evaluate its overall quality. Among these experiments, we observed that alternatives from literature are susceptible to numerical errors, whereas our approach effectively mitigates this issue.

Suggested Citation

  • Cristiano Arbex Valle, 2024. "Portfolio optimisation: bridging the gap between theory and practice," Papers 2407.00887, arXiv.org.
  • Handle: RePEc:arx:papers:2407.00887
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.00887
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Chiodi & Renata Mansini & Maria Speranza, 2003. "Semi-Absolute Deviation Rule for Mutual Funds Portfolio Selection," Annals of Operations Research, Springer, vol. 124(1), pages 245-265, November.
    2. Adcock, C. J. & Meade, N., 1994. "A simple algorithm to incorporate transactions costs in quadratic optimisation," European Journal of Operational Research, Elsevier, vol. 79(1), pages 85-94, November.
    3. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    4. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    5. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    6. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    7. Hans Kellerer & Renata Mansini & M. Speranza, 2000. "Selecting Portfolios with Fixed Costs and Minimum Transaction Lots," Annals of Operations Research, Springer, vol. 99(1), pages 287-304, December.
    8. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    9. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    10. Duan Li & Xiaoling Sun & Jun Wang, 2006. "Optimal Lot Solution To Cardinality Constrained Mean–Variance Formulation For Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 83-101, January.
    11. Bruce I. Jacobs & Kenneth N. Levy & Harry M. Markowitz, 2005. "Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions," Operations Research, INFORMS, vol. 53(4), pages 586-599, August.
    12. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    13. Pogue, G A, 1970. "An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions' Costs, Short Sales, Leverage Policies and Taxes," Journal of Finance, American Finance Association, vol. 25(5), pages 1005-1027, December.
    14. Enrico Angelelli & Renata Mansini & M. Speranza, 2012. "Kernel Search: a new heuristic framework for portfolio selection," Computational Optimization and Applications, Springer, vol. 51(1), pages 345-361, January.
    15. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    16. Cristiano Arbex Valle & Diana Roman & Gautam Mitra, 2017. "Novel approaches for portfolio construction using second order stochastic dominance," Computational Management Science, Springer, vol. 14(2), pages 257-280, April.
    17. Philipp Baumann & Norbert Trautmann, 2013. "Portfolio-optimization models for small investors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 345-356, June.
    18. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    2. Patrizia Beraldi & Antonio Violi & Massimiliano Ferrara & Claudio Ciancio & Bruno Antonio Pansera, 2021. "Dealing with complex transaction costs in portfolio management," Annals of Operations Research, Springer, vol. 299(1), pages 7-22, April.
    3. Leal, Marina & Ponce, Diego & Puerto, Justo, 2020. "Portfolio problems with two levels decision-makers: Optimal portfolio selection with pricing decisions on transaction costs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 712-727.
    4. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    5. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    6. González-Díaz, Julio & González-Rodríguez, Brais & Leal, Marina & Puerto, Justo, 2021. "Global optimization for bilevel portfolio design: Economic insights from the Dow Jones index," Omega, Elsevier, vol. 102(C).
    7. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    8. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    9. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
    10. Fereshteh Vaezi & Seyed Jafar Sadjadi & Ahmad Makui, 2019. "A portfolio selection model based on the knapsack problem under uncertainty," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    11. Gili Rosenberg & Poya Haghnegahdar & Phil Goddard & Peter Carr & Kesheng Wu & Marcos L'opez de Prado, 2015. "Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer," Papers 1508.06182, arXiv.org, revised Aug 2016.
    12. Kyle Steinhauer & Takahisa Fukadai & Sho Yoshida, 2020. "Solving the Optimal Trading Trajectory Problem Using Simulated Bifurcation," Papers 2009.08412, arXiv.org.
    13. Enrico Angelelli & Renata Mansini & M. Speranza, 2012. "Kernel Search: a new heuristic framework for portfolio selection," Computational Optimization and Applications, Springer, vol. 51(1), pages 345-361, January.
    14. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    15. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.
    16. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    17. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    18. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    19. Wei Xu & Jie Tang & Ka Fai Cedric Yiu & Jian Wen Peng, 2024. "An Efficient Global Optimal Method for Cardinality Constrained Portfolio Optimization," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 690-704, March.
    20. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.00887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.