IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i6p1111-1131.html
   My bibliography  Save this article

Wind utilization and carbon emissions equilibrium: Scheduling strategy for wind-thermal generation system

Author

Listed:
  • Hongxia Liu
  • Huiling Wang
  • Zongtang Xie

Abstract

As a developing country and one of the world’s largest carbon emitter, China has been facing significant pressure to reduce fossil fuel use while maintaining sustainable socio-economic growth. This paper proposes a multi-objective optimization method for a joint wind thermal generation system to reduce carbon emissions and increase wind power utilization while guaranteeing power supply demand risk and profitability. Wind and coal thermal power plant generation sources are scheduled into the joint system and connected to the same grid. The thermal power bears the basic load and the wind power seeks more chances to connect to the main grid. A model transformation method is applied and Lingo 13.0 software is used to solve the model. A case study from Ningxia, China is presented to demonstrate the practicality and efficiency of the optimization mode, the results from which showed that the proposed model was able to improve the emissions performance and increase the wind energy utilization, while guaranteeing power supply reliability and achieve maximum profitability, which could assist authorities when developing power generation plans. The results under different scenarios showed that a minimum and maximum wind power utilization rate existed in the joint wind-thermal power generation system, and that units with higher conversion efficiencies and lower emissions parameters were more reasonable when seeking to increase wind power utilization and reduce carbon emissions. The system generation profitability was found to increase for joint systems connected to the main grid when wind power utilization was increased. Lastly, several management proposals are given in this paper to ensure better joint system application.

Suggested Citation

  • Hongxia Liu & Huiling Wang & Zongtang Xie, 2019. "Wind utilization and carbon emissions equilibrium: Scheduling strategy for wind-thermal generation system," Energy & Environment, , vol. 30(6), pages 1111-1131, September.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:6:p:1111-1131
    DOI: 10.1177/0958305X18813701
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18813701
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18813701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
    2. Melamed, Michal & Ben-Tal, Aharon & Golany, Boaz, 2018. "A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source," Renewable Energy, Elsevier, vol. 118(C), pages 909-917.
    3. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
    4. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    5. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    6. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    7. Wolf-Peter Schill & Michael Pahle & Christian Gambardella, 2017. "Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
    8. Zhao, Xu & Luo, Dongkun, 2017. "Driving force of rising renewable energy in China: Environment, regulation and employment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 48-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    3. Qing Feng & Qian Huang & Qingyan Zheng & Li Lu, 2018. "New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    4. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Wang, Bo & Zhou, Min & Xin, Bo & Zhao, Xin & Watada, Junzo, 2019. "Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage," Energy, Elsevier, vol. 178(C), pages 101-114.
    6. McCauley, Darren & Pettigrew, Kerry, 2023. "Building a just transition in asia-pacific: Four strategies for reducing fossil fuel dependence and investing in clean energy," Energy Policy, Elsevier, vol. 183(C).
    7. Tim Felling & Björn Felten & Paul Osinski & Christoph Weber, 2023. "Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus," The Energy Journal, , vol. 44(6), pages 71-112, November.
    8. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    9. Xu, Jiuping & Shu, Kejing & Wang, Fengjuan & Yang, Guocan, 2024. "Bi-level multi-objective distribution strategy integrating the permit trading scheme towards coal production capacity layout optimization: Case study from China," Resources Policy, Elsevier, vol. 91(C).
    10. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    11. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    12. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    13. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    14. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    15. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    16. Sampene, Agyemang Kwasi & Li, Cai & Wiredu, John, 2024. "An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance," Energy Policy, Elsevier, vol. 187(C).
    17. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    18. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    19. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    20. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:6:p:1111-1131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.