IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i3d10.1007_s00180-019-00871-5.html
   My bibliography  Save this article

An enhanced genetic algorithm with new mutation for cluster analysis

Author

Listed:
  • M. A. El-Shorbagy

    (Prince Sattam Bin Abdulaziz University
    Menoufia University)

  • A. Y. Ayoub

    (Menoufia University)

  • A. A. Mousa

    (Menoufia University
    Taif University)

  • I. M. El-Desoky

    (Menoufia University)

Abstract

This paper proposed a new methodology to perform cluster analysis based on genetic algorithm (GA). Firstly, the population of GA is initialized by k-means algorithm to reach the best centers of clusters. Secondly, the GA operators are applied. New mutation is proposed depending on the extreme points in clusters groups to overcome the limitations of k-means algorithm. Finally, the proposed approach is applied on a set of data consists of a non-overlapping data and large datasets with high dimensionality from machine learning repository (UCI). In addition an electrical application is used to measure the capability of our approach to solve real world application. The results proved the superiority of the new methodology.

Suggested Citation

  • M. A. El-Shorbagy & A. Y. Ayoub & A. A. Mousa & I. M. El-Desoky, 2019. "An enhanced genetic algorithm with new mutation for cluster analysis," Computational Statistics, Springer, vol. 34(3), pages 1355-1392, September.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00871-5
    DOI: 10.1007/s00180-019-00871-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00871-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00871-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    2. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. A. El-Shorbagy & A. A. Mousa & M. A. Farag, 2019. "An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 911-944, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. El-Shorbagy & A. A. Mousa & M. A. Farag, 2019. "An intelligent computing technique based on a dynamic-size subpopulations for unit commitment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 911-944, September.
    2. Mohammed A. El-Shorbagy & Islam M. Eldesoky & Mohamady M. Basyouni & Islam Nassar & Adel M. El-Refaey, 2022. "Chaotic Search-Based Salp Swarm Algorithm for Dealing with System of Nonlinear Equations and Power System Applications," Mathematics, MDPI, vol. 10(9), pages 1-30, April.
    3. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    4. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.
    5. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    6. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    7. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    8. Yeo, Eng Jet & Kennedy, David M. & O'Rourke, Fergal, 2022. "Tidal current turbine blade optimisation with improved blade element momentum theory and a non-dominated sorting genetic algorithm," Energy, Elsevier, vol. 250(C).
    9. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Micro-Siting of Wind Turbines in an Optimal Wind Farm Area Using Teaching–Learning-Based Optimization Technique," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    10. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Effective Realization of Multi-Objective Elitist Teaching–Learning Based Optimization Technique for the Micro-Siting of Wind Turbines," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    11. Shen, Yanqing, 2018. "Improved chaos genetic algorithm based state of charge determination for lithium batteries in electric vehicles," Energy, Elsevier, vol. 152(C), pages 576-585.
    12. Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
    13. Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Faraggiana, E. & Ghigo, A. & Sirigu, M. & Petracca, E. & Giorgi, G. & Mattiazzo, G. & Bracco, G., 2024. "Optimal floating offshore wind farms for Mediterranean islands," Renewable Energy, Elsevier, vol. 221(C).
    15. Petrović, A. & Đurišić, Ž., 2021. "Genetic algorithm based optimized model for the selection of wind turbine for any site-specific wind conditions," Energy, Elsevier, vol. 236(C).
    16. Yunqi Xiao & Yi Wang & Yanping Sun, 2018. "Reactive Power Optimal Control of a Wind Farm for Minimizing Collector System Losses," Energies, MDPI, vol. 11(11), pages 1-15, November.
    17. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    18. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Mohammed A. El-Shorbagy & Fatma M. Al-Drees, 2023. "Studying the Effect of Introducing Chaotic Search on Improving the Performance of the Sine Cosine Algorithm to Solve Optimization Problems and Nonlinear System of Equations," Mathematics, MDPI, vol. 11(5), pages 1-25, March.
    20. Wang, Longyan & Zuo, Ming J. & Xu, Jian & Zhou, Yunkai & Tan, Andy C., 2019. "Optimizing wind farm layout by addressing energy-variance trade-off: A single-objective optimization approach," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-019-00871-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.