IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6945-d294696.html
   My bibliography  Save this article

An Improved, Negatively Correlated Search for Solving the Unit Commitment Problem’s Integration with Electric Vehicles

Author

Listed:
  • Qun Niu

    (Shanghai Key Laboratory of Power Station Automation Technology, School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Kecheng Jiang

    (Shanghai Key Laboratory of Power Station Automation Technology, School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Zhile Yang

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

Abstract

With the rapid development of plug-in electric vehicles (PEVs), the charging of a number of PEVs has already brought huge impact and burden to the power grid, particularly at the medium and low voltage distribution networks. This presents a big challenge for further mass roll-out of electric vehicles. To assess the impact of charging of substantial number of electric vehicles on the grid, a model of 30000 PEVs integrated with unit commitment (UCEV) was investigated in this study. The unit commitment was a large-scale, mixed-integer, nonlinear, NP-Hard (non-deterministic polynomial) optimization problem, while the integration of PEVs further increased the complexity of the model. In this paper, a global best inspired negatively correlated search (GBNCS) method which extends the evolutionary logic of negatively correlated search is proposed to tackle the UCEV problem. In the proposed algorithm, a rounding transfer function in GBNCS, is deployed to convert real-valued variables into binary ones; further, the global best information is combined in the population to improve the efficiency of the algorithm. Numerical results confirmed that the proposed GBNCS can achieve good performance in both a basic IEEE 10 unit commitment problem and the UCEV problem. It was also shown that, among four charging modes, the off-peak charging mode and EPRI (Electric Power Research Institute) charging mode are more economical in PEV charging.

Suggested Citation

  • Qun Niu & Kecheng Jiang & Zhile Yang, 2019. "An Improved, Negatively Correlated Search for Solving the Unit Commitment Problem’s Integration with Electric Vehicles," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6945-:d:294696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    2. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    3. Fernandes, Camila & Frías, Pablo & Latorre, Jesús M., 2012. "Impact of vehicle-to-grid on power system operation costs: The Spanish case study," Applied Energy, Elsevier, vol. 96(C), pages 194-202.
    4. Fazel Mohammadi & Gholam-Abbas Nazri & Mehrdad Saif, 2019. "A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    3. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    4. Jun Yang & Wanmeng Hao & Lei Chen & Jiejun Chen & Jing Jin & Feng Wang, 2016. "Risk Assessment of Distribution Networks Considering the Charging-Discharging Behaviors of Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-20, July.
    5. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    6. He, Lifu & Yang, Jun & Yan, Jun & Tang, Yufei & He, Haibo, 2016. "A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles," Applied Energy, Elsevier, vol. 168(C), pages 179-192.
    7. Jun Yang & Jiejun Chen & Lei Chen & Feng Wang & Peiyuan Xie & Cilin Zeng, 2016. "A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles," Energies, MDPI, vol. 9(9), pages 1-18, August.
    8. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    9. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    10. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    11. De Gennaro, Michele & Paffumi, Elena & Scholz, Harald & Martini, Giorgio, 2014. "GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on the electric energy grid," Applied Energy, Elsevier, vol. 124(C), pages 94-116.
    12. Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
    13. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
    14. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    15. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    16. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    17. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    18. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    19. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    20. Dowds, Jonathan & Howerter, Sarah & Hines, Paul & Aultman-Hall, Lisa, 2024. "Integrated Modeling of Electric Vehicle Energy Demand and Regional Electricity Generation," Institute of Transportation Studies, Working Paper Series qt9nv8z4kc, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6945-:d:294696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.