IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i5d10.1007_s12351-022-00715-z.html
   My bibliography  Save this article

Coordinating production, inspection and maintenance decisions in a stochastic manufacturing system with deterioration failures

Author

Listed:
  • A. S. Xanthopoulos

    (Democritus University of Thrace)

  • S. Vlastos

    (Democritus University of Thrace)

  • D. E. Koulouriotis

    (Democritus University of Thrace)

Abstract

We examine a manufacturing system that operates under an (s, S) or base stock production control policy. The system is subjected to periodic inspections to determine its deterioration stage. Based on that information, it is decided whether to maintain the system or not by a threshold-type policy. The system breaks down if it experiences a degradation at the last deterioration stage. At that time, a repair is initiated to restore the system to the good-as-new state. We develop Markov chain models of the examined system and derive mathematical expressions for a series of relevant performance metrics. We define an expected cost function that includes production, inventory, lost sales, repair, inspection, and maintenance costs. Furthermore, this research examines numerically the properties of the cost function and proposes a local search procedure for finding optimal control parameters in respect to minimizing the total cost. A series of numerical experiments is conducted in order to compare alternative production/inspection/maintenance policies under varying system parameters. The performance of the proposed local search heuristic is also evaluated by comparing it with an exhaustive search procedure. Based on the experimental findings, this research provides insights regarding best production/inspection/maintenance control practices.

Suggested Citation

  • A. S. Xanthopoulos & S. Vlastos & D. E. Koulouriotis, 2022. "Coordinating production, inspection and maintenance decisions in a stochastic manufacturing system with deterioration failures," Operational Research, Springer, vol. 22(5), pages 5707-5732, November.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00715-z
    DOI: 10.1007/s12351-022-00715-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-022-00715-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-022-00715-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sayyideh Mehri Mousavi & Hesam Shams & Shahrzad Ahmadi, 2017. "Simultaneous optimization of repair and control-limit policy in condition-based maintenance," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 245-254, January.
    2. Xanthopoulos, A.S. & Koulouriotis, D.E. & Botsaris, P.N., 2015. "Single-stage Kanban system with deterioration failures and condition-based preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 111-122.
    3. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    4. Koutras, V.P. & Malefaki, S. & Platis, A.N., 2017. "Optimization of the dependability and performance measures of a generic model for multi-state deteriorating systems under maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 73-86.
    5. Kazaz, Burak & Sloan, Thomas W., 2013. "The impact of process deterioration on production and maintenance policies," European Journal of Operational Research, Elsevier, vol. 227(1), pages 88-100.
    6. Renqian Zhang & Xuefang Sun, 2018. "Integrated Production-Delivery Lot Sizing Model with Limited Production Capacity and Transportation Cost considering Overtime Work and Maintenance Time," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. K. Sivashankari & R. Valarmathi, 2023. "Optimal pricing and production lot-size policies in imperfect production system with price-sensitive demand, reworking, scrap, and sales return," Operational Research, Springer, vol. 23(3), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    2. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    3. Michiel A. J. uit het Broek & Ruud H. Teunter & Bram de Jonge & Jasper Veldman & Nicky D. Van Foreest, 2020. "Condition-Based Production Planning: Adjusting Production Rates to Balance Output and Failure Risk," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 792-811, July.
    4. Song Jiu, 2021. "A two-phase approach for integrating preventive maintenance with production and delivery in an unreliable coal mine," Journal of Heuristics, Springer, vol. 27(6), pages 991-1020, December.
    5. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    6. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    7. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Liu, Bin & Liang, Zhenglin & Parlikad, Ajith Kumar & Xie, Min & Kuo, Way, 2017. "Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 200-209.
    9. Peymankar, Mahboobe & Dehghanian, Farzad & Ghiami, Yousef & Abolbashari, Mohammad Hassan, 2018. "The effects of contractual agreements on the economic production quantity model with machine breakdown," International Journal of Production Economics, Elsevier, vol. 201(C), pages 203-215.
    10. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    11. Yan, Tao & Lei, Yaguo & Wang, Biao & Han, Tianyu & Si, Xiaosheng & Li, Naipeng, 2020. "Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Najafi, Seyedvahid & Zheng, Rui & Lee, Chi-Guhn, 2021. "An optimal opportunistic maintenance policy for a two-unit series system with general repair using proportional hazards models," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Zhong, Chongquan & Jin, Haibo, 2014. "A novel optimal preventive maintenance policy for a cold standby system based on semi-Markov theory," European Journal of Operational Research, Elsevier, vol. 232(2), pages 405-411.
    14. Wu, Bei & Cui, Lirong & Fang, Chen, 2019. "Reliability analysis of semi-Markov systems with restriction on transition times," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Fang, Chen & Cui, Lirong, 2021. "Reliability evaluation for balanced systems with auto-balancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Khaled Guerraiche & Latifa Dekhici & Eric Chatelet & Abdelkader Zeblah, 2021. "Multi-Objective Electrical Power System Design Optimization Using a Modified Bat Algorithm," Energies, MDPI, vol. 14(13), pages 1-19, July.
    18. Zheng, Rui & Wang, Jingjing & Zhang, Yingzhi, 2023. "A hybrid repair-replacement policy in the proportional hazards model," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1011-1021.
    19. Guo, Chunhui & Liang, Zhenglin, 2022. "A predictive Markov decision process for optimizing inspection and maintenance strategies of partially observable multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00715-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.