IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i3d10.1007_s11069-018-3277-0.html
   My bibliography  Save this article

Advanced casualty estimation based on tsunami evacuation intended behavior: case study at Yuigahama Beach, Kamakura, Japan

Author

Listed:
  • Tomoyuki Takabatake

    (Waseda University)

  • Tomoya Shibayama

    (Waseda University)

  • Miguel Esteban

    (The University of Tokyo)

  • Hidenori Ishii

    (Waseda University)

Abstract

Tsunamis are some of the most destructive types of natural hazards that can affect coastal areas. To optimize tsunami mitigation measures, it is important to estimate the potential casualties that can result from one of these events. Taking into account tsunami awareness and the possible evacuation behavior of at-risk individuals is necessary to estimate the number of casualties, though most of the research carried out to date has not considered detailed evacuation behavior when conducting simulations. In the present study, the authors proposed a new approach to estimating the number of tsunami casualties, based on a tsunami evacuation simulation model that considers the evacuation behavior of local residents, tourists and beach users. Such behavior parameters were incorporated by analyzing the results from previous questionnaires surveys. The model was applied to Yuigahama Beach in Kamakura City, Japan, with the aim of assessing potential tsunami casualties and providing suggestions regarding tsunami mitigation measures. The authors conducted seven tsunami inundation simulations for different earthquake scenarios, and then casualties were estimated considering six different evacuation scenarios. Based on the simulation results, it appears particularly important to attempt to improve the intended evacuation behavior of both the local population and visitors. Particularly, providing information about safe places and the routes to reach them is necessary, as prompt evacuation and heading to higher ground were found to be insufficient behavior to save lives during a tsunami event.

Suggested Citation

  • Tomoyuki Takabatake & Tomoya Shibayama & Miguel Esteban & Hidenori Ishii, 2018. "Advanced casualty estimation based on tsunami evacuation intended behavior: case study at Yuigahama Beach, Kamakura, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1763-1788, July.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3277-0
    DOI: 10.1007/s11069-018-3277-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3277-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3277-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Jelínek & E. Krausmann & M. González & J. Álvarez-Gómez & J. Birkmann & T. Welle, 2012. "Approaches for tsunami risk assessment and application to the city of Cádiz, Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 273-293, January.
    2. N. Nirupama, 2009. "Analysis of the global tsunami data for vulnerability and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 11-16, January.
    3. Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori A. Cramer & Shangjia Dong, 2017. "Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1347-1372, September.
    4. Manuela Di Mauro & Kusnowidjaia Megawati & Veronica Cedillos & Brian Tucker, 2013. "Tsunami risk reduction for densely populated Southeast Asian cities: analysis of vehicular and pedestrian evacuation for the city of Padang, Indonesia, and assessment of interventions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 373-404, September.
    5. Sergio Freire & Christoph Aubrecht & Stephanie Wegscheider, 2013. "Advancing tsunami risk assessment by improving spatio-temporal population exposure and evacuation modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1311-1324, September.
    6. Non Okumura & Sebastiaan N. Jonkman & Miguel Esteban & Bas Hofland & Tomoya Shibayama, 2017. "A method for tsunami risk assessment: a case study for Kamakura, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1451-1472, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azin Fathianpour & Suzanne Wilkinson & Mostafa Babaeian Jelodar & Barry Evans, 2023. "Reducing the vulnerability of tourists to tsunami: challenges for decision-makers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1315-1339, September.
    2. Mehrshad Amini & Dylan R. Sanderson & Daniel T. Cox & Andre R. Barbosa & Nathanael Rosenheim, 2024. "Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9187-9222, August.
    3. Tomoyuki Takabatake & Philippe St-Germain & Ioan Nistor & Jacob Stolle & Tomoya Shibayama, 2019. "Numerical modelling of coastal inundation from Cascadia Subduction Zone tsunamis and implications for coastal communities on western Vancouver Island, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 267-291, August.
    4. Vana Tsimopoulou & Takahito Mikami & Tajnova Tanha Hossain & Hiroshi Takagi & Miguel Esteban & Nuki Agya Utama, 2020. "Uncovering unnoticed small-scale tsunamis: field survey in Lombok, Indonesia, following the 2018 earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2045-2070, September.
    5. Karel Mls & Milan Kořínek & Kamila Štekerová & Petr Tučník & Vladimír Bureš & Pavel Čech & Martina Husáková & Peter Mikulecký & Tomáš Nacházel & Daniela Ponce & Marek Zanker & František Babič & Ioanna, 2023. "Agent-based models of human response to natural hazards: systematic review of tsunami evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1887-1908, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrshad Amini & Dylan R. Sanderson & Daniel T. Cox & Andre R. Barbosa & Nathanael Rosenheim, 2024. "Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9187-9222, August.
    2. Nathan Wood & Jeanne M. Jones & Yoshiki Yamazaki & Kwok-Fai Cheung & Jacinta Brown & Jamie L. Jones & Nina Abdollahian, 2019. "Population vulnerability to tsunami hazards informed by previous and projected disasters: a case study of American Samoa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 505-528, February.
    3. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    4. Jorge León & Alan March, 2016. "An urban form response to disaster vulnerability: Improving tsunami evacuation in Iquique, Chile," Environment and Planning B, , vol. 43(5), pages 826-847, September.
    5. Sergio Freire & Christoph Aubrecht & Stephanie Wegscheider, 2013. "Advancing tsunami risk assessment by improving spatio-temporal population exposure and evacuation modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1311-1324, September.
    6. Nathan Wood & Jeff Peters, 2015. "Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1811-1831, January.
    7. Karel Mls & Milan Kořínek & Kamila Štekerová & Petr Tučník & Vladimír Bureš & Pavel Čech & Martina Husáková & Peter Mikulecký & Tomáš Nacházel & Daniela Ponce & Marek Zanker & František Babič & Ioanna, 2023. "Agent-based models of human response to natural hazards: systematic review of tsunami evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1887-1908, February.
    8. Hiroshi Sekiguchi & Rie Takeuchi & Yoko Sato & Tsuyoshi Matsumoto & Jun Kobayashi & Takehiro Umemura, 2022. "Can Homecare Chronic Respiratory Disease Patients with Home Oxygen Treatment (HOT) in Southern Okinawa, Japan Be Evacuated Ahead of the Next Anticipated Tsunami?," IJERPH, MDPI, vol. 19(9), pages 1-13, May.
    9. Jorge León & Alonso Ogueda & Alejandra Gubler & Patricio Catalán & Matías Correa & Javiera Castañeda & Gianni Beninati, 2024. "Increasing resilience to catastrophic near-field tsunamis: systems for capturing, modelling, and assessing vertical evacuation practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9135-9161, August.
    10. MD Jahedul Alam & Muhammad Ahsanul Habib, 2021. "Mass evacuation microsimulation modeling considering traffic disruptions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 323-346, August.
    11. André Trindade & Paula Teves-Costa & Cristina Catita, 2018. "A GIS-based analysis of constraints on pedestrian tsunami evacuation routes: Cascais case study (Portugal)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 169-185, September.
    12. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    14. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Linda Sorg & Neiler Medina & Daniel Feldmeyer & Arlex Sanchez & Zoran Vojinovic & Jörn Birkmann & Alessandra Marchese, 2018. "Capturing the multifaceted phenomena of socioeconomic vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 257-282, May.
    16. Alexandre Oliveira Tavares & José Leandro Barros & Angela Santos, 2017. "Multidimensional Approach for Tsunami Vulnerability Assessment: Framing the Territorial Impacts in Two Municipalities in Portugal," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 788-811, April.
    17. Tiezhong Liu & Huyuan Zhang & Hubo Zhang, 2020. "The Influence of Social Capital on Protective Action Perceptions Towards Hazardous Chemicals," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    18. Chen Chen & Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori Cramer, 2022. "Evacuation behaviors in tsunami drills," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 845-871, May.
    19. Naphat Mahittikul & Nawat Wancham & Wanit Treeranurat & Kumpol Saengtabtim & Ampan Laosunthara & Jing Tang & Natt Leelawat, 2024. "Examining the Factors Influencing Tsunami Evacuation Action Selection in Thailand: A Comprehensive Study Involving Local Residents, Non-Local Workers, and Travelers," Sustainability, MDPI, vol. 16(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3277-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.