IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v102y2020i1d10.1007_s11069-020-03935-8.html
   My bibliography  Save this article

Regional flood frequency analysis: evaluation of regions in cluster space using support vector regression

Author

Listed:
  • K. Haddad

    (Cumberland Council)

  • A. Rahman

    (Western Sydney University)

Abstract

Regional flood frequency analysis (RFFA) remains an area of active research around the world. Obtaining reliable RFFA estimates is critical for many hydrological and environmental studies. To this end, RFFA models based on multidimensional scaling (MDS) are coupled with support vector regression (SVR) to obtain improved flood quantile estimates at ungauged sites. MDS is used to form regions in catchment data space using the site characteristics and geographical distance from gauged sites. Then SVR models are applied to identify the functional relationships between flood quantiles and the catchment characteristics variables in MDS space, in particular SVR is used to capture the complexity and nonlinearity in flood generation processes that may not be easily captured in loglinear models. Four SVR models: linear, polynomial, radial basis function (RBF) and the sigmoid kernel models, are developed. The proposed approaches are applied to 202 catchments in the States of New South Wales and Victoria, Australia. The leave-one-out validation procedure is used to evaluate the performance of the proposed models. Results of the proposed models are compared with Bayesian generalised least squares regression which is also developed in MDS space. The results indicate that the MDS-RBF-based SVR model provides more consistent flood quantile estimates than the competing SVR models. The RBF SVR approach also demonstrates better generalisation ability than the competing SVR models examined. The MDS-based SVR RBF kernel generally shows the best performance among all the models in terms of prediction accuracy. Overall, the main strengths of the SVR are that it captures efficiently the nonlinearity between the dependent and predictor variables and when coupled with MDS for delineation of regions, the prediction ability of the model increases along with a reduction in bias and relative error.

Suggested Citation

  • K. Haddad & A. Rahman, 2020. "Regional flood frequency analysis: evaluation of regions in cluster space using support vector regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 489-517, May.
  • Handle: RePEc:spr:nathaz:v:102:y:2020:i:1:d:10.1007_s11069-020-03935-8
    DOI: 10.1007/s11069-020-03935-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03935-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03935-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Aziz & Sohail Rai & A. Rahman, 2015. "Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 805-821, June.
    2. Ayesha Rahman & Ataur Rahman & Mohammad Zaman & Khaled Haddad & Amimul Ahsan & Monzur Imteaz, 2013. "A study on selection of probability distributions for at-site flood frequency analysis in Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1803-1813, December.
    3. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. Giovanna Boccuzzo & Licia Maron, 2017. "Proposal of a composite indicator of job quality based on a measure of weighted distances," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2357-2374, September.
    3. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    4. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    5. Ivan Mihál & Eva Luptáková & Martin Pavlík, 2021. "Wood-inhabiting macromycete communities in spruce stands on former agricultural land," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-65.
    6. Marie Diekmann & Ludwig Theuvsen, 2019. "Value structures determining community supported agriculture: insights from Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(4), pages 733-746, December.
    7. D. V. Pahan Prasada, 2013. "Domestic versus Multilateral Institutions in Bilateral Trade: A Comparative Gravity Analysis," International Economic Journal, Taylor & Francis Journals, vol. 27(1), pages 127-142, March.
    8. Malcolm Dow & Peter Willett & Roderick McDonald & Belver Griffith & Michael Greenacre & Peter Bryant & Daniel Wartenberg & Ove Frank, 1987. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 245-278, September.
    9. Mark Davison, 1988. "A reformulation of the general Euclidean model for the external analysis of preference data," Psychometrika, Springer;The Psychometric Society, vol. 53(3), pages 305-320, September.
    10. Enrico di Bella & Matteo Corsi & Lucia Leporatti, 2015. "A Multi-indicator Approach for Smart Security Policy Making," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 122(3), pages 653-675, July.
    11. Willem Heiser, 1991. "A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 7-27, March.
    12. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    13. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    14. Luís Francisco Aguiar & Pedro C. Magalhães & Maria Joana Soares, 2010. "Synchronism in Electoral Cycles: How United are the United States?," NIPE Working Papers 17/2010, NIPE - Universidade do Minho.
    15. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    16. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    17. Noah C Benson & Jeremy R Manning & David H Brainard, 2014. "Unsupervised Learning of Cone Spectral Classes from Natural Images," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-13, June.
    18. Kennen, Jonathan G. & Kauffman, Leon J. & Ayers, Mark A. & Wolock, David M. & Colarullo, Susan J., 2008. "Use of an integrated flow model to estimate ecologically relevant hydrologic characteristics at stream biomonitoring sites," Ecological Modelling, Elsevier, vol. 211(1), pages 57-76.
    19. W. Day & R. Sokal, 1989. "Classification Society of North America Twentieth Anniversary," Journal of Classification, Springer;The Classification Society, vol. 6(1), pages 169-170, December.
    20. Malgorzata Markowska & Andrzej Sokolowski & Danuta Strahl, 2021. "Flexible Multidimensional Scaling for Human Smart Development Analysis in EU Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 4), pages 435-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:102:y:2020:i:1:d:10.1007_s11069-020-03935-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.