IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i3d10.1007_s11069-016-2156-9.html
   My bibliography  Save this article

Design rainfall in Qatar: sensitivity to climate change scenarios

Author

Listed:
  • Abdullah Al Mamoon

    (Ministry of Municipality and Urban Planning
    Western Sydney University)

  • Niels E. Joergensen

    (COWI A/S)

  • Ataur Rahman

    (Western Sydney University)

  • Hassan Qasem

    (Ministry of Municipality and Urban Planning)

Abstract

Design rainfall is needed in the design of numerous engineering infrastructures such as urban drainage systems, bridges, railways, metro systems, highways and flood levees. Design rainfall is derived using regional frequency analysis approach based on observed rainfall data from a large number of stations within a homogeneous region. This paper provides an assessment of the possible impacts of climate change on design rainfalls in Qatar. The future climate conditions are established based on AR4 and A2 categories of emission scenarios (SRES) specified by the Intergovernmental Panel on Climate Change. Predicted 24-h annual maximum rainfall series for both the wet (NCAR-CCSM) and dry scenarios (CSIRO-MK3.5) for the Qatari grid points are extracted for three different periods, which are current (2000–2029), medium-term (2040–2069) and end-of-century climates (2080–2099). Using an L-moments-based index frequency approach, homogeneous regions are established and the best-fit distribution is then used to derive rainfall quantiles for average recurrence intervals (ARIs) of 2, 5, 10, 25, 50 and 100 years. The results show that there is no significant change in the design rainfalls in Qatar in the short term covering 2040–2069; however, a significant change is predicted at the end of century covering 2080–2099. Updated design rainfalls are estimated considering climate change scenarios for the period of 2080–2099 by averaging results from the wet and dry climate scenarios. The increase in 24-h annual maximum rainfall for the period 2080–2099 (compared with the current period 2000–2029) is found to be in the range of 68 and 76 % for 100-year ARI. For the typical design ARIs of 10–20 years, the increase in design rainfall is found to be in the range of 43 and 54 %. The method presented in this study can be applied to other arid regions, in particular to the Middle Eastern countries.

Suggested Citation

  • Abdullah Al Mamoon & Niels E. Joergensen & Ataur Rahman & Hassan Qasem, 2016. "Design rainfall in Qatar: sensitivity to climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1797-1810, April.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2156-9
    DOI: 10.1007/s11069-016-2156-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2156-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2156-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    2. Elias Ishak & Khaled Haddad & Mohammad Zaman & Ataur Rahman, 2011. "Scaling property of regional floods in New South Wales Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1155-1167, September.
    3. Khaled Haddad & Ataur Rahman, 2014. "Derivation of short-duration design rainfalls using daily rainfall statistics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1391-1401, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodora Karanisa & Alexandre Amato & Renee Richer & Sara Abdul Majid & Cynthia Skelhorn & Sami Sayadi, 2021. "Agricultural Production in Qatar’s Hot Arid Climate," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    2. Abdullah Al Mamoon & Ataur Rahman, 2017. "Rainfall in Qatar: Is it changing?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 453-470, January.
    3. Tarek Ben Hassen & Hamid El Bilali & Mohammed Al-Maadeed, 2020. "Agri-Food Markets in Qatar: Drivers, Trends, and Policy Responses," Sustainability, MDPI, vol. 12(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    2. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Anita Lazurko & Henry David Venema, 2017. "Financing High Performance Climate Adaptation in Agriculture: Climate Bonds for Multi-Functional Water Harvesting Infrastructure on the Canadian Prairies," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    4. Jianzhu Li & Qiushuang Ma & Yu Tian & Yuming Lei & Ting Zhang & Ping Feng, 2019. "Flood scaling under nonstationarity in Daqinghe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 675-696, September.
    5. Seulkee Heo & Whanhee Lee & Michelle L. Bell, 2021. "Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    6. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    7. Guy Gratton & Anil Padhra & Spyridon Rapsomanikis & Paul D. Williams, 2020. "The impacts of climate change on Greek airports," Climatic Change, Springer, vol. 160(2), pages 219-231, May.
    8. Pan, Xiongfeng & Wang, Mengyang & Li, Mengna, 2023. "Low-carbon policy and industrial structure upgrading: Based on the perspective of strategic interaction among local governments," Energy Policy, Elsevier, vol. 183(C).
    9. Fouad H. Saeed & Mahmoud Saleh Al-Khafaji & Furat A. Mahmood Al-Faraj & Vincent Uzomah, 2024. "Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    10. Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
    11. Panagiotis Dalias & Anastasis Christou & Damianos Neocleous, 2018. "Adjustment of Irrigation Schedules as a Strategy to Mitigate Climate Change Impacts on Agriculture in Cyprus," Agriculture, MDPI, vol. 9(1), pages 1-9, December.
    12. Tarek Ben Hassen & Hamid El Bilali & Mohammed Al-Maadeed, 2020. "Agri-Food Markets in Qatar: Drivers, Trends, and Policy Responses," Sustainability, MDPI, vol. 12(9), pages 1-31, May.
    13. Khairy H. A. Hassan & Salman Alamery & Mohamed Farouk El-Kholy & Shobhan Das & Mounir M. Salem-Bekhit, 2022. "Effect of Some Soil Conditioners on Water-Use Efficacy, Growth, and Yield of Date Palm Siwi Grown in Sandy Soil under Different Irrigation Regimes to Mitigate Climate Change," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    14. Ron Drori & Baruch Ziv & Hadas Saaroni & Adi Etkin & Efrat Sheffer, 2021. "Recent changes in the rain regime over the Mediterranean climate region of Israel," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    15. H. Athar, 2013. "Seasonal variability of the observed and the projected daily temperatures in northern Saudi Arabia," Climatic Change, Springer, vol. 119(2), pages 333-344, July.
    16. Baris Karapinar & Gökhan Özertan, 2020. "Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey," Climatic Change, Springer, vol. 158(3), pages 453-472, February.
    17. Zachariadis, Theodoros & Taibi, Emanuele, 2015. "Exploring drivers of energy demand in Cyprus – Scenarios and policy options," Energy Policy, Elsevier, vol. 86(C), pages 166-175.
    18. Heba Akasha & Omid Ghaffarpasand & Francis D. Pope, 2023. "Climate Change, Air Pollution and the Associated Burden of Disease in the Arabian Peninsula and Neighbouring Regions: A Critical Review of the Literature," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    19. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    20. Ali Ahmadalipour & Hamid Moradkhani & Mukesh Kumar, 2019. "Mortality risk from heat stress expected to hit poorest nations the hardest," Climatic Change, Springer, vol. 152(3), pages 569-579, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2156-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.