IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v58y2011i3p1155-1167.html
   My bibliography  Save this article

Scaling property of regional floods in New South Wales Australia

Author

Listed:
  • Elias Ishak
  • Khaled Haddad
  • Mohammad Zaman
  • Ataur Rahman

Abstract

Regional flood frequency analysis (RFFA) is often used in hydrology to estimate flood quantiles when there is a limitation of at-site recorded flood data. One of the commonly used RFFA methods is the index flood method, which is based on the assumptions that a region satisfies criterion of simple scaling and it can be treated homogeneous. Another RFFA method is quantile regression technique where prediction equations are developed for flood quantiles of interest as function of catchment characteristics. In this paper, the scaling property of regional floods in New South Wales (NSW) State in Australia is investigated. The results indicate that the annual maximum floods in NSW satisfy a simple scaling assumption. The application of a heterogeneity test, however, reveals that NSW flood data set does not satisfy the criteria for a homogeneous region. Finally, a set of prediction equations are developed for NSW using quantile regression technique; an independent test shows that these equations can provide reasonably accurate design flood estimates with a median relative error of about 27%. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Elias Ishak & Khaled Haddad & Mohammad Zaman & Ataur Rahman, 2011. "Scaling property of regional floods in New South Wales Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1155-1167, September.
  • Handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:1155-1167
    DOI: 10.1007/s11069-011-9719-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9719-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9719-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jim Hall & Paul Sayers & Richard Dawson, 2005. "National-scale Assessment of Current and Future Flood Risk in England and Wales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 147-164, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Al Mamoon & Niels E. Joergensen & Ataur Rahman & Hassan Qasem, 2016. "Design rainfall in Qatar: sensitivity to climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1797-1810, April.
    2. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    3. Jianzhu Li & Qiushuang Ma & Yu Tian & Yuming Lei & Ting Zhang & Ping Feng, 2019. "Flood scaling under nonstationarity in Daqinghe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 675-696, September.
    4. K. Aziz & Sohail Rai & A. Rahman, 2015. "Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 805-821, June.
    5. Sonali Swetapadma & C. S. P. Ojha, 2020. "Selection of a basin-scale model for flood frequency analysis in Mahanadi river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 519-552, May.
    6. Ayesha Rahman & Ataur Rahman & Mohammad Zaman & Khaled Haddad & Amimul Ahsan & Monzur Imteaz, 2013. "A study on selection of probability distributions for at-site flood frequency analysis in Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1803-1813, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    2. Ralf Merz & Günter Blöschl & Günter Humer, 2008. "National flood discharge mapping in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 53-72, July.
    3. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    4. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    5. Alicia N. Rambaldi & Cameron S. Fletcher & Kerry Collins & Ryan R.J. McAllister, 2013. "Housing Shadow Prices in an Inundation-prone Suburb," Urban Studies, Urban Studies Journal Limited, vol. 50(9), pages 1889-1905, July.
    6. Matthew Ranson & Lisa Tarquinio & Audrey Lew, 2016. "Modeling the Impact of Climate Change on Extreme Weather Losses," NCEE Working Paper Series 201602, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised May 2016.
    7. Ioannis Kougkoulos & Myriam Merad & Simon J. Cook & Ioannis Andredakis, 2021. "Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1959-1980, November.
    8. Robert A. Jane & David J. Simmonds & Ben P. Gouldby & Jonathan D. Simm & Luciana Dalla Valle & Alison C. Raby, 2018. "Exploring the Potential for Multivariate Fragility Representations to Alter Flood Risk Estimates," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1847-1870, September.
    9. Jenq-Tzong Shiau & Ya-Yi Hsiao, 2012. "Water-deficit-based drought risk assessments in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 237-257, October.
    10. S. Hochrainer-Stigler & N. Lugeri & M. Radziejewski, 2014. "Up-scaling of impact dependent loss distributions: a hybrid convolution approach for flood risk in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1437-1451, January.
    11. Lorena Liuzzo & Vincenzo Sammartano & Gabriele Freni, 2019. "Comparison between Different Distributed Methods for Flood Susceptibility Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3155-3173, July.
    12. K. Bruijn & N. Lips & B. Gersonius & H. Middelkoop, 2016. "The storyline approach: a new way to analyse and improve flood event management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 99-121, March.
    13. C. Pereira & C. Coelho, 2013. "Mapping erosion risk under different scenarios of climate change for Aveiro coast, Portugal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1033-1050, October.
    14. Xiao Fu & Chong-Shi Gu & Huai-Zhi Su & Xiang-Nan Qin, 2018. "Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method," IJERPH, MDPI, vol. 15(5), pages 1-22, April.
    15. Giuliano Di Baldassarre & Attilio Castellarin & Alberto Montanari & Armando Brath, 2009. "Probability-weighted hazard maps for comparing different flood risk management strategies: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 479-496, September.
    16. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    17. K. M. Bruijn & N. Lips & B. Gersonius & H. Middelkoop, 2016. "The storyline approach: a new way to analyse and improve flood event management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 99-121, March.
    18. Xi Hu & Jim W. Hall & Peijun Shi & Wee Ho Lim, 2016. "The spatial exposure of the Chinese infrastructure system to flooding and drought hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1083-1118, January.
    19. Xu, Zixuan & Ma, Jinfeng & Zheng, Hua & Wang, Lijing & Ying, Lingxiao & Li, Ruonan & Yang, Yanzheng, 2024. "Quantification of the flood mitigation ecosystem service by coupling hydrological and hydrodynamic models," Ecosystem Services, Elsevier, vol. 68(C).
    20. Sauer, Johannes & Finger, Robert, 2014. "Climate Risk Management Strategies in Agriculture – The Case of Flood Risk," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172679, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:1155-1167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.