IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v75y2015i1p365-388.html
   My bibliography  Save this article

Insights from Hazus loss estimations in Israel for Dead Sea Transform earthquakes

Author

Listed:
  • T. Levi
  • D. Bausch
  • O. Katz
  • J. Rozelle
  • A. Salamon

Abstract

History shows that countries along the Dead Sea Transform, including Israel, have suffered considerable destruction from strong earthquakes, and thus, a modern approach for damage and loss estimations is essential in mitigating damage from future earthquakes. Yet to date, only preliminary damage scenarios have been developed. The present study uses the Hazus MH 2.1 (2012) software to simulate damage and loss estimation for seven earthquakes that may affect Israel. For the first time, over 2,200 different building construction schemes, including a comprehensive nationwide building inventory of over 900K buildings, were simulated in order to identify the high-risk areas and suggest potential mitigation strategies as well as a financial budget plan that would ultimately alleviate the anticipated catastrophe in Israel. The results show excellent ability of Hazus to resolve the expected levels of damage, including damages for various types of buildings, debris and economic losses. Furthermore, it shows that the most intensive damage is expected to concentrate in northern Israel, mainly in the Haifa and Bet Sheàn regions, as well as in areas of older building stock and adjacent to the major fault lines. Comparison between the budget required for strengthening structures and the economic loss expected after a strong earthquake shows that strengthening structures will undoubtedly reduce the disaster magnitude dramatically. The loss estimations can provide decision makers a tool for planning post-earthquake emergency actions including rescue, debris clearance, building inspection, sheltering requirements and directing the civil protection authorities in a focused and proper response during an earthquake event. Although local fragility curves have not yet been developed in Israel, the new scenarios presented here demonstrate that the benefits of realizing already now the rough scope of earthquake damage greatly outdo future gains from as yet unavailable exact assessments. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • T. Levi & D. Bausch & O. Katz & J. Rozelle & A. Salamon, 2015. "Insights from Hazus loss estimations in Israel for Dead Sea Transform earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 365-388, January.
  • Handle: RePEc:spr:nathaz:v:75:y:2015:i:1:p:365-388
    DOI: 10.1007/s11069-014-1325-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1325-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1325-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amos Salamon & Oded Katz & Onn Crouvi, 2010. "Zones of required investigation for earthquake-related hazards in Jerusalem," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 375-406, May.
    2. Jonathan Remo & Nicholas Pinter, 2012. "Hazus-MH earthquake modeling in the central USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1055-1081, September.
    3. S. Ploeger & G. Atkinson & C. Samson, 2010. "Applying the HAZUS-MH software tool to assess seismic risk in downtown Ottawa, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 1-20, April.
    4. Alena Rein & Ross Corotis, 2013. "An overview approach to seismic awareness for a “quiescent” region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 335-363, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stav Shapira & Tsafrir Levi & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2018. "The impact of behavior on the risk of injury and death during an earthquake: a simulation-based study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1059-1074, April.
    2. Daniel Felsenstein & Eilat Elbaum & Tsafrir Levi & Ran Calvo, 2021. "Post-processing HAZUS earthquake damage and loss assessments for individual buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 21-45, January.
    3. Penjani Hopkins Nyimbili & Turan Erden, 2018. "Spatial decision support systems (SDSS) and software applications for earthquake disaster management with special reference to Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1485-1507, February.
    4. Stav Shapira & Lena Novack & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2016. "An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    5. Paula Aguirre & Jorge Vásquez & Juan Carlos de la Llera & Juan González & Gabriel González, 2018. "Earthquake damage assessment for deterministic scenarios in Iquique, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1433-1461, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stav Shapira & Tsafrir Levi & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2018. "The impact of behavior on the risk of injury and death during an earthquake: a simulation-based study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1059-1074, April.
    2. Sang-Guk Yum & Kiyoung Son & Seunghyun Son & Ji-Myong Kim, 2020. "Identifying Risk Indicators for Natural Hazard-Related Power Outages as a Component of Risk Assessment: An Analysis Using Power Outage Data from Hurricane Irma," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    3. Jong-Hwa Park & Myoungsu Shin & Gi-Hyoug Cho, 2016. "A dynamic estimation of casualties from an earthquake based on a time-use survey: applying HAZUS-MH software to Ulsan, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 289-306, March.
    4. Sang-Guk Yum & Ji-Myong Kim & Kiyoung Son, 2020. "Natural Hazard Influence Model of Maintenance and Repair Cost for Sustainable Accommodation Facilities," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    5. Jong-Hwa Park & Myoungsu Shin & Gi-Hyoug Cho, 2016. "A dynamic estimation of casualties from an earthquake based on a time-use survey: applying HAZUS-MH software to Ulsan, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 289-306, March.
    6. Daniel Felsenstein & Eilat Elbaum & Tsafrir Levi & Ran Calvo, 2021. "Post-processing HAZUS earthquake damage and loss assessments for individual buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 21-45, January.
    7. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Heidi Kreibich & Philip Bubeck & Michael Kunz & Holger Mahlke & Stefano Parolai & Bijan Khazai & James Daniell & Tobia Lakes & Kai Schröter, 2014. "A review of multiple natural hazards and risks in Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2279-2304, December.
    9. Stav Shapira & Lena Novack & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2016. "An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    10. Heon-Joon Park & Jeong-Gon Ha & Se-Hyun Kim & Sang-Sun Jo, 2019. "Seismic Performance of Ancient Masonry Structures in Korea Rediscovered in 2016 M 5.8 Gyeongju Earthquake," Sustainability, MDPI, vol. 11(6), pages 1-13, March.
    11. T. Levi & A. Salamon & D. Bausch & J. Rozelle & A. Cutrell & S. Hoyland & Y. Hamiel & O. Katz & R. Calvo & Z. Gvirtzman & B. Ackerman & I. Gavrieli, 2018. "Earthquake scenario in a national drill, the case of “Turning Point 6”, 2012, Israel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 113-132, May.
    12. Xiang Zeng & Xinzheng Lu & T. Y. Yang & Zhen Xu, 2016. "Application of the FEMA-P58 methodology for regional earthquake loss prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 177-192, August.
    13. Rehman Akhtar & Joost Santos, 2013. "Risk-based input–output analysis of hurricane impacts on interdependent regional workforce systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 391-405, January.
    14. Motti Zohar & Amos Salamon & Carmit Rapaport, 2023. "How Expert Is the Crowd? Insights into Crowd Opinions on the Severity of Earthquake Damage," Data, MDPI, vol. 8(6), pages 1-14, June.
    15. Ali Shafiee & Mohsen Kamalian & Mohammad Jafari & Hossein Hamzehloo, 2011. "Ground motion studies for microzonation in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 481-505, October.
    16. Jonathan Remo & Nicholas Pinter, 2012. "Hazus-MH earthquake modeling in the central USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1055-1081, September.
    17. Wenhua Qi & Guiwu Su & Lei Sun & Fan Yang & Yang Wu, 2017. "“Internet+” approach to mapping exposure and seismic vulnerability of buildings in a context of rapid socioeconomic growth: a case study in Tangshan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 107-139, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:75:y:2015:i:1:p:365-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.