IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7702-d415169.html
   My bibliography  Save this article

Identifying Risk Indicators for Natural Hazard-Related Power Outages as a Component of Risk Assessment: An Analysis Using Power Outage Data from Hurricane Irma

Author

Listed:
  • Sang-Guk Yum

    (Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA)

  • Kiyoung Son

    (School of Architectural Engineering, Ulsan University, Ulsan 44610, Korea)

  • Seunghyun Son

    (Department of Architectural Engineering, Kyung Hee University, Suwon 17104, Korea)

  • Ji-Myong Kim

    (Department of Architectural Engineering, Mokpo National University, Mokpo 58554, Korea)

Abstract

Extensive use has been made of lifecycle-cost assessment to enhance the cost-effectiveness and resilience of facilities management. However, if such assessments are to be truly effective, supplemental information will be needed on the major costs to be expected over buildings’ entire lives. Electricity generation and distribution systems, for example, are absolutely indispensable to industry and human society, not least in the operation of buildings and other infrastructure as networks. The widespread disruption that ensues when such power systems are damaged often carries considerable repair costs. Natural disasters likewise can cause extensive societal, economic, and environmental damage. Such damage is often associated with lengthy power outages that, as well as being directly harmful, can hinder emergency response and recovery. Accordingly, the present study investigated the correlations of natural hazard indicators such as wind speed and rainfall, along with environmental data regarding the power failure in Florida caused by Hurricane Irma in 2017 utilizing multiple regression analysis. The environmental data in question, selected on the basis of a thorough literature review, was tree density. Our analysis indicated that the independent variables, maximum wind speed, total rainfall, and tree density, were all significantly correlated with the dependent variable, power failure. Among these, rainfall was the least significant. Despite there being only three independent variables in the model, its adjusted coefficient of determination (0.512) indicated its effectiveness as a predictor of the power outages caused by Hurricane Irma. As such, our results can serve the construction industry’s establishment of advanced safety guidelines and structural designs power transmission systems in regions at risk of hurricanes and typhoons. Additionally, insurance companies’ loss-assessment modeling for power-system facilities would benefit from incorporating the three identified risk indicators. Finally, our findings can serve as a useful reference to policymakers tasked with mitigating power outages’ effects on infrastructure in hurricane-prone areas. It is hoped that this work will be extended, facilitating infrastructure restoration planning and making societies and economies more sustainable.

Suggested Citation

  • Sang-Guk Yum & Kiyoung Son & Seunghyun Son & Ji-Myong Kim, 2020. "Identifying Risk Indicators for Natural Hazard-Related Power Outages as a Component of Risk Assessment: An Analysis Using Power Outage Data from Hurricane Irma," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7702-:d:415169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Remo & Nicholas Pinter, 2012. "Hazus-MH earthquake modeling in the central USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1055-1081, September.
    2. Seung‐Ryong Han & Seth D. Guikema & Steven M. Quiring, 2009. "Improving the Predictive Accuracy of Hurricane Power Outage Forecasts Using Generalized Additive Models," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1443-1453, October.
    3. Menoka Bal & David Bryde & Damian Fearon & Edward Ochieng, 2013. "Stakeholder Engagement: Achieving Sustainability in the Construction Sector," Sustainability, MDPI, vol. 5(2), pages 1-16, February.
    4. Ji-Myong Kim & Seunghyun Son & Sungho Lee & Kiyoung Son, 2020. "Cost of Climate Change: Risk of Building Loss from Typhoon in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-11, August.
    5. Alena Rein & Ross Corotis, 2013. "An overview approach to seismic awareness for a “quiescent” region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 335-363, June.
    6. Sang-Guk Yum & Ji-Myong Kim & Kiyoung Son, 2020. "Natural Hazard Influence Model of Maintenance and Repair Cost for Sustainable Accommodation Facilities," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    7. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunkuk Kim, 2021. "Technology and Management for Sustainable Buildings and Infrastructures," Sustainability, MDPI, vol. 13(16), pages 1-3, August.
    2. Yongjun Chen & Xiaojian Li & Jin Wang & Mei Liu & Chaoxun Cai & Yuefeng Shi, 2023. "Research on the Application of Fuzzy Bayesian Network in Risk Assessment of Catenary Construction," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
    3. Loni, Abdolah & Asadi, Somayeh, 2024. "A data-driven approach to quantify social vulnerability to power outages: California case study," Applied Energy, Elsevier, vol. 359(C).
    4. Hasan M. Salman & Jagadeesh Pasupuleti & Ahmad H. Sabry, 2023. "Review on Causes of Power Outages and Their Occurrence: Mitigation Strategies," Sustainability, MDPI, vol. 15(20), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Levi & D. Bausch & O. Katz & J. Rozelle & A. Salamon, 2015. "Insights from Hazus loss estimations in Israel for Dead Sea Transform earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 365-388, January.
    2. Sunkuk Kim, 2021. "Technology and Management for Sustainable Buildings and Infrastructures," Sustainability, MDPI, vol. 13(16), pages 1-3, August.
    3. Sang-Guk Yum & Ji-Myong Kim & Kiyoung Son, 2020. "Natural Hazard Influence Model of Maintenance and Repair Cost for Sustainable Accommodation Facilities," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    4. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Basem Al Khatib & Yap Soon Poh & Ahmed El-Shafie, 2018. "Delay Factors in Reconstruction Projects: A Case Study of Mataf Expansion Project," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    6. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    7. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    8. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Stav Shapira & Lena Novack & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2016. "An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    10. Jean Baptiste Habumuremyi & Thomas K Tarus, 2021. "Effect of Stakeholders’ Participation on Sustainability of Community Projects in Ruhango District, Rwanda," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 5(09), pages 429-433, September.
    11. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    13. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    14. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Centralized vs. Decentralized Electric Grid Resilience Analysis Using Leontief’s Input–Output Model," Energies, MDPI, vol. 17(6), pages 1-21, March.
    15. Dimitris N. Trakas & Mathaios Panteli & Nikos D. Hatziargyriou & Pierluigi Mancarella, 2019. "Spatial Risk Analysis of Power Systems Resilience During Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 195-211, January.
    16. Gina L. Tonn & Seth D. Guikema & Celso M. Ferreira & Steven M. Quiring, 2016. "Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1936-1947, October.
    17. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Mishra, Sakshi & Anderson, Kate & Miller, Brian & Boyer, Kyle & Warren, Adam, 2020. "Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies," Applied Energy, Elsevier, vol. 264(C).
    19. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    20. Liping Huang & Zhaoxiong Huang & Chun Sing Lai & Guangya Yang & Zhuoli Zhao & Ning Tong & Xiaomei Wu & Loi Lei Lai, 2021. "Augmented Power Dispatch for Resilient Operation through Controllable Series Compensation and N-1-1 Contingency Assessment," Energies, MDPI, vol. 14(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7702-:d:415169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.