IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i3d10.1007_s11069-018-3258-3.html
   My bibliography  Save this article

Earthquake damage assessment for deterministic scenarios in Iquique, Chile

Author

Listed:
  • Paula Aguirre

    (Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN)
    Escuela de Ingeniería, Pontificia Universidad Católica de Chile)

  • Jorge Vásquez

    (Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN))

  • Juan Carlos de la Llera

    (Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN)
    Escuela de Ingeniería, Pontificia Universidad Católica de Chile)

  • Juan González

    (Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN)
    Universidad Católica del Norte)

  • Gabriel González

    (Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN)
    Universidad Católica del Norte)

Abstract

Risk evaluation and loss analysis is key in foreseeing the impact of disasters caused by natural hazards and may contribute effectively in improving resilience in a community through the pre-evaluation of preparedness and mitigation actions. The pilot study presented herein is for the Chilean city of Iquique, which is located at the core of a seismic gap that extends from south Perú to north Chile, and has strategic geopolitical and economic importance for the country. The region was hit April 1, 2014, by an $$M_\mathrm{w}$$ M w 8.2 earthquake that caused only moderate damage, but seismological evidence suggests that there is still a potential for a much larger event in the region. Therefore, a careful damage assessment study is fundamental to anticipate the possible physical, social, and economic consequences that Iquique may face in the future. In this work, the HAZUS-MH platform was adapted and used to simulate a set of ten plausible physics-based future seismic scenarios with magnitudes ranging from $$M_\mathrm{w}$$ M w 8.40 to $$M_\mathrm{w}$$ M w 8.98, which were proposed based on an analysis of interplate locking and the residual slip potential remaining after the April 1, 2014, earthquake. Successful application of this damage assessment methodology relies on the construction of a comprehensive exposure model that takes into account regional features and a good characterization of the physical vulnerabilities. For Iquique, a large body of public and local data was used to develop a detailed inventory of physical and social assets including an aggregated building count, demographics, and essential facilities. To characterize the response of the built environment to seismic demand, appropriate HAZUS fragility curves were applied, and outcomes were validated against the damage observed in the 2014 earthquake. After satisfactory testing, a deterministic earthquake damage assessment study was carried out for the collection of predictive scenarios aimed to estimate their expected impacts. This analysis provides data for future evaluations of different physical and social mitigation measures for the city.

Suggested Citation

  • Paula Aguirre & Jorge Vásquez & Juan Carlos de la Llera & Juan González & Gabriel González, 2018. "Earthquake damage assessment for deterministic scenarios in Iquique, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1433-1461, July.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3258-3
    DOI: 10.1007/s11069-018-3258-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3258-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3258-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alix Becerra & Luis Podestá & Roberto Monetta & Esteban Sáez & Felipe Leyton & Gonzalo Yañez, 2015. "Seismic microzoning of Arica and Iquique, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 567-586, October.
    2. Nicolás C. Bronfman & Pamela C. Cisternas & Esperanza López-Vázquez & Luis A. Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    3. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    4. T. Levi & D. Bausch & O. Katz & J. Rozelle & A. Salamon, 2015. "Insights from Hazus loss estimations in Israel for Dead Sea Transform earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 365-388, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrshad Amini & Dylan R. Sanderson & Daniel T. Cox & Andre R. Barbosa & Nathanael Rosenheim, 2024. "Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9187-9222, August.
    2. Fielbaum, Andrés & Jara-Diaz, Sergio, 2021. "Assessment of the socio-spatial effects of urban transport investment using Google Maps API," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Juan González & Gabriel González & Rafael Aránguiz & Diego Melgar & Natalia Zamora & Mahesh N. Shrivastava & Ranjit Das & Patricio A. Catalán & Rodrigo Cienfuegos, 2020. "A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 231-254, January.
    4. Tingting Ji & Hsi-Hsien Wei & Igal M. Shohet & Feng Xiong, 2021. "Risk-based resilience concentration assessment of community to seismic hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1731-1751, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonia Ilabaca & Germán Paredes-Belmar & Pamela P. Alvarez, 2022. "Optimization of Humanitarian Aid Distribution in Case of an Earthquake and Tsunami in the City of Iquique, Chile," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    2. Andrea Cerase & Lorenzo Cugliari, 2023. "Something Still Remains: Factors Affecting Tsunami Risk Perception on the Coasts Hit by the Reggio Calabria-Messina 1908 Event (Italy)," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    3. Xuemei Fang & Liang Cao & Luyi Zhang & Binbin Peng, 2023. "Risk perception and resistance behavior intention of residents living near chemical industry parks: an empirical analysis in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1655-1675, January.
    4. Kaijing Xue & Shili Guo & Yi Liu & Shaoquan Liu & Dingde Xu, 2021. "Social Networks, Trust, and Disaster-Risk Perceptions of Rural Residents in a Multi-Disaster Environment: Evidence from Sichuan, China," IJERPH, MDPI, vol. 18(4), pages 1-25, February.
    5. Patricio Valdivieso & Pablo Neudorfer & Krister P. Andersson, 2021. "Causes and Consequences of Local Government Efforts to Reduce Risk and Adapt to Extreme Weather Events: Municipal Organizational Robustness," Sustainability, MDPI, vol. 13(14), pages 1-43, July.
    6. Tamara Lukić & Jelena Dunjić & Bojan Đerčan & Ivana Penjišević & Saša Milosavljević & Milka Bubalo-Živković & Milica Solarević, 2018. "Local Resilience to Natural Hazards in Serbia. Case Study: The West Morava River Valley," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    7. Sefa Mızrak & Ahmet Özdemir & Ramazan Aslan, 2021. "Adaptation of hurricane risk perception scale to earthquake risk perception and determining the factors affecting women's earthquake risk perception," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2241-2259, December.
    8. Deolfa Josè Moisès & Nnenesi Kgabi & Olivia Kunguma, 2023. "Integrating “Top-Down” and “Community-Centric” Approaches for Community-Based Flood Early Warning Systems in Namibia," Challenges, MDPI, vol. 14(4), pages 1-17, October.
    9. Adityawan Sigit & Maki Koyama & Morihiro Harada, 2023. "Flood Risk Assessment Focusing on Exposed Social Characteristics in Central Java, Indonesia," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    10. Juan Camilo Gomez-Zapata & Cristhian Parrado & Theresa Frimberger & Fernando Barragán-Ochoa & Fabio Brill & Kerstin Büche & Michael Krautblatter & Michael Langbein & Massimiliano Pittore & Hugo Rosero, 2021. "Community Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    11. Sunbin YOO & KUMAGAI Junya & KAWABATA Yuta & MANAGI Shunsuke, 2022. "Achieving Inclusive Transportation: Fully Automated Vehicles with Social Support," Discussion papers 22017, Research Institute of Economy, Trade and Industry (RIETI).
    12. Nicolás Bronfman & Paula Repetto & Paola Cordón & Javiera Castañeda & Pamela Cisternas, 2021. "Gender Differences on Psychosocial Factors Affecting COVID-19 Preventive Behaviors," Sustainability, MDPI, vol. 13(11), pages 1-12, May.
    13. Marcel Favereau & Luis F. Robledo & María T. Bull, 2020. "Homeostatic representation for risk decision making: a novel multi-method simulation approach for evacuation under volcanic eruption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 29-56, August.
    14. Stav Shapira & Lena Novack & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2016. "An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    15. Penjani Hopkins Nyimbili & Turan Erden, 2018. "Spatial decision support systems (SDSS) and software applications for earthquake disaster management with special reference to Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1485-1507, February.
    16. Stav Shapira & Tsafrir Levi & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2018. "The impact of behavior on the risk of injury and death during an earthquake: a simulation-based study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1059-1074, April.
    17. Daniel Felsenstein & Eilat Elbaum & Tsafrir Levi & Ran Calvo, 2021. "Post-processing HAZUS earthquake damage and loss assessments for individual buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 21-45, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3258-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.