IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1565-d214012.html
   My bibliography  Save this article

Seismic Performance of Ancient Masonry Structures in Korea Rediscovered in 2016 M 5.8 Gyeongju Earthquake

Author

Listed:
  • Heon-Joon Park

    (Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea)

  • Jeong-Gon Ha

    (Korea Atomic Energy Research Institute (KAERI), Daejeon34057, Korea)

  • Se-Hyun Kim

    (National Research Institute of Cultural Heritage (NRICH), Daejeon 34122, Korea)

  • Sang-Sun Jo

    (National Research Institute of Cultural Heritage (NRICH), Daejeon 34122, Korea)

Abstract

The Gyeongju Historic Areas, which include the millennium-old capital of the Silla Kingdom, are located in the region most frequently affected by seismic events in the Korean peninsula. Despite the numerous earthquakes documented, most of the stone architectural heritage has retained their original forms. This study systematically reviews and categorises studies dealing with the seismic risk assessment of the architectural heritage of the historic areas. It applies research methodologies, such as the evaluation of the engineering characteristics of subsoil in architectural heritage sites, site-specific analysis of the ground motions in response to earthquake scenarios, geographic information system (GIS)-based seismic microzonation according to the geotechnical engineering parameters, reliability assessment of dynamic centrifuge model testing for stone masonry structures and evaluation of seismic behaviour of architectural heritage. The M 5.8 earthquake that hit Gyeongju on September 12, 2016 is analysed from an engineering point of view and the resulting damage to the stone architectural heritage is reported. The study focuses on Cheomseongdae, an astronomical observatory in Gyeongju, whose structural engineering received considerable attention since its seismic resistance was reported after the last earthquake. Dynamic centrifuge model tests applying the Gyeongju Earthquake motions are performed to prove that it is not a coincidence that Cheomseongdae, a masonry structure composed of nearly 400 stone members, survived numerous seismic events for over 1300 years. The structural characteristics of Cheomseongdae, such as the well-compacted filler materials in its lower part, rough inside wall in contrast to the smooth exterior, intersecting stone beams and interlocking headstones are proven to contribute to its overall seismic performance, demonstrating outstanding seismic design technology.

Suggested Citation

  • Heon-Joon Park & Jeong-Gon Ha & Se-Hyun Kim & Sang-Sun Jo, 2019. "Seismic Performance of Ancient Masonry Structures in Korea Rediscovered in 2016 M 5.8 Gyeongju Earthquake," Sustainability, MDPI, vol. 11(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1565-:d:214012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amos Salamon & Oded Katz & Onn Crouvi, 2010. "Zones of required investigation for earthquake-related hazards in Jerusalem," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 375-406, May.
    2. Zheng Lu & Hengrui Zhang & Chuanguo Jia & Zhimu Peng, 2018. "Seismic Performance of a New Type of Fabricated Tie-Column," Sustainability, MDPI, vol. 10(6), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shinyoung Kwag & Daegi Hahm & Minkyu Kim & Seunghyun Eem, 2020. "Development of a Probabilistic Seismic Performance Assessment Model of Slope Using Machine Learning Methods," Sustainability, MDPI, vol. 12(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Levi & D. Bausch & O. Katz & J. Rozelle & A. Salamon, 2015. "Insights from Hazus loss estimations in Israel for Dead Sea Transform earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 365-388, January.
    2. Stav Shapira & Tsafrir Levi & Yaron Bar-Dayan & Limor Aharonson-Daniel, 2018. "The impact of behavior on the risk of injury and death during an earthquake: a simulation-based study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1059-1074, April.
    3. Daniel Felsenstein & Eilat Elbaum & Tsafrir Levi & Ran Calvo, 2021. "Post-processing HAZUS earthquake damage and loss assessments for individual buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 21-45, January.
    4. T. Levi & A. Salamon & D. Bausch & J. Rozelle & A. Cutrell & S. Hoyland & Y. Hamiel & O. Katz & R. Calvo & Z. Gvirtzman & B. Ackerman & I. Gavrieli, 2018. "Earthquake scenario in a national drill, the case of “Turning Point 6”, 2012, Israel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 113-132, May.
    5. Motti Zohar & Amos Salamon & Carmit Rapaport, 2023. "How Expert Is the Crowd? Insights into Crowd Opinions on the Severity of Earthquake Damage," Data, MDPI, vol. 8(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1565-:d:214012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.