IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4177-d254197.html
   My bibliography  Save this article

Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA

Author

Listed:
  • Ahmed M. Youssef

    (Geological Hazards Department, Applied Geology Sector, Saudi Geological Survey, P.O. Box 54141, Jeddah 21514, Saudi Arabia
    Geology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt)

  • Mazen M. Abu Abdullah

    (Geological Hazards Department, Applied Geology Sector, Saudi Geological Survey, P.O. Box 54141, Jeddah 21514, Saudi Arabia)

  • Biswajeet Pradhan

    (Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Information, Systems and Modelling, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia
    Department of Energy and Mineral Resources Engineering, Choongmu-gwan, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea)

  • Ahmed F. D. Gaber

    (Department of Geography, Faculty of Art, Sohag University, Sohag 82524, Egypt
    Geography and GIS Department, College of Arts, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

Abstract

In this paper, multispectral and multi-temporal satellite data were used to assess the spatial and temporal evolution of the agriculture activities in the Al-Jouf region, Kingdom of Saudi Arabia (KSA). In the current study, an attempt was made to map the agriculture sprawl from 1987 to 2017 using temporal Landsat images in a geographic information system (GIS) environment for better decision-making and sustainable agriculture expansion. Our findings indicated that the agriculture activities developed through two crucial stages: high and low rise stages. Low rise stages occurred during three sub-stages from April 1987 to April 1988, from September 1993 to August 1998, and from April 2008 to May 2015, with overall change rates of 37.9, 44.4, and 30.5 km 2 /year, respectively. High rise stages occurred during three sub-stages from April 1988 to February 1993, from September 2000 to March 2006, and from April 2016 to August 2017, with overall change rates of 132.4, 159.1, and 119.5 km 2 /year, respectively. Different environmental problems due to uncontrolled agriculture activities were observed in the area, including substantial depletion of the groundwater table. Another environmental impact observed was the appearance of sinkholes that occurred suddenly with no warning signs. These environmental impacts will increase in the future if no regulated restrictions are implemented by decision-makers.

Suggested Citation

  • Ahmed M. Youssef & Mazen M. Abu Abdullah & Biswajeet Pradhan & Ahmed F. D. Gaber, 2019. "Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA," Sustainability, MDPI, vol. 11(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4177-:d:254197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jialing Yu & Jian Wu, 2018. "The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    2. Tammy E. Parece & James B. Campbell, 2017. "Geospatial Evaluation for Urban Agriculture Land Inventory: Roanoke, Virginia USA," International Journal of Applied Geospatial Research (IJAGR), IGI Global, vol. 8(1), pages 43-63, January.
    3. Omar K.M. Ouda, 2014. "Impacts of agricultural policy on irrigation water demand: a case study of Saudi Arabia," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(2), pages 282-292, June.
    4. Ye-Shuang Xu & Shui-Long Shen & Zheng-Yin Cai & Guo-Yun Zhou, 2008. "The state of land subsidence and prediction approaches due to groundwater withdrawal in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 123-135, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Yang & Quan Long & Wenli Li & Zhichao Wang & Xinhua He & Jie Wang & Xiaozhong Wang & Huaye Xiong & Chaoyi Guo & Guancheng Zhang & Bin Luo & Jun Qiu & Xinping Chen & Fusuo Zhang & Xiaojun Shi & Yue, 2020. "Mapping the Environmental Cost of a Typical Citrus-Producing County in China: Hotspot and Optimization," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    2. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuhong Zhang & Apurbo Sarkar & Hongyu Wang, 2021. "Does Internet and Information Technology Help Farmers to Maximize Profit: A Cross-Sectional Study of Apple Farmers in Shandong, China," Land, MDPI, vol. 10(4), pages 1-18, April.
    2. Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).
    3. Lijuan Du & Li Xu & Yanping Li & Changshun Liu & Zhenhua Li & Jefferson S. Wong & Bo Lei, 2019. "China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Bhattarai, Keshav & Adhikari, Ambika P., 2022. "Minimizing Surface Run-off, Improving Underground Water Recharging, and On-site Rain Harvesting in the Kathmandu Valley," SocArXiv tqfns, Center for Open Science.
    5. Dorijan Radočaj & Ante Šiljeg & Rajko Marinović & Mladen Jurišić, 2023. "State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    6. Sagit Barel-Shaked, 2023. "Network-based business model in the agri-food sector: A case study of Green Fingers," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(4), pages 162-170.
    7. Xu-Wei Wang & Ye-Shuang Xu, 2022. "Investigation on the phenomena and influence factors of urban ground collapse in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 1-33, August.
    8. Shirzad, Hossein & Barati, Ali Akbar & Ehteshammajd, Shaghayegh & Goli, Imaneh & Siamian, Narges & Moghaddam, Saghi Movahhed & Pour, Mahdad & Tan, Rong & Janečková, Kristina & Sklenička, Petr & Azadi,, 2022. "Agricultural land tenure system in Iran: An overview," Land Use Policy, Elsevier, vol. 123(C).
    9. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    10. Ya-Qiong Wang & Shao-Bing Zhang & Long-Long Chen & Yong-Li Xie & Zhi-Feng Wang, 2019. "Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    11. Yanbo Cao & Ya-ni Wei & Wen Fan & Min Peng & Liangliang Bao, 2020. "Experimental study of land subsidence in response to groundwater withdrawal and recharge in Changping District of Beijing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-17, May.
    12. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    13. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    14. Anna Szeląg-Sikora & Jakub Sikora & Marcin Niemiec & Zofia Gródek-Szostak & Joanna Kapusta-Duch & Maciej Kuboń & Monika Komorowska & Joanna Karcz, 2019. "Impact of Integrated and Conventional Plant Production on Selected Soil Parameters in Carrot Production," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    15. Yong Liu & Hai-Jun Huang, 2013. "Characterization and mechanism of regional land subsidence in the Yellow River Delta, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 687-709, September.
    16. Nhung Pham Thi & Martin Kappas & Heiko Faust, 2021. "Impacts of Agricultural Land Acquisition for Urbanization on Agricultural Activities of Affected Households: A Case Study in Huong Thuy Town, Thua Thien Hue Province, Vietnam," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    17. Chun-Yong Luo & Shui-Long Shen & Jie Han & Guan-Lin Ye & Suksun Horpibulsuk, 2015. "Hydrogeochemical environment of aquifer groundwater in Shanghai and potential hazards to underground infrastructures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 753-774, August.
    18. Lai, Zhaohao & Chen, Meiqiu & Liu, Taoju, 2020. "Changes in and prospects for cultivated land use since the reform and opening up in China," Land Use Policy, Elsevier, vol. 97(C).
    19. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    20. Ouda, Omar K.M. & Al-Waked, Rafat F. & Alshehri, Abdulrahman A., 2014. "Privatization of water-supply services in Saudi Arabia: A unique experience," Utilities Policy, Elsevier, vol. 31(C), pages 107-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4177-:d:254197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.