IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p569-d1018521.html
   My bibliography  Save this article

Effects of Aeolian Sand and Water−Cement Ratio on Performance of a Novel Mine Backfill Material

Author

Listed:
  • Guodong Li

    (College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Environmental Protection Mining for Mineral Resources at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China)

  • Hongzhi Wang

    (College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Environmental Protection Mining for Mineral Resources at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China)

  • Zhaoxuan Liu

    (College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China)

  • Honglin Liu

    (College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Environmental Protection Mining for Mineral Resources at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China)

  • Haitian Yan

    (College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China)

  • Zenwei Liu

    (College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China)

Abstract

The gob-side entry retaining (GER) technique, as the family member of the pillarless coal mining system, is becoming popular, mainly attributed to its high resource recovery rate and significant environmental benefits. Seeking cost-effective backfill material to develop the roadside backfilling body (RBB) is generally a hot topic for coal operators and scholars. Except for its relatively high cost, the other shortcoming of the widely used high-water backfill material is also obvious when used in arid, semi-arid deserts or Gobi mining areas lacking water. The modified high-water backfill material (MBM) mixed with aeolian sand was recently developed as an alternative to conventional backfill materials. Some critical parameters affecting both the physical and mechanical properties of the MBM, including the amount of the aeolian sand and water-to-powder ratio of the high water-content material, have been experimentally investigated in the present research. Test results showed that the MBM featured high early strength and bearing capability after a large post-peak deformation. In particular, the adjustable setting time of the MBM through changing the amount of sand widens its application in practice. Unlike the high-water backfill material, the MBM is a typical elastoplastic material; the stress-strain curves consist of pore compression, elastic deformation, yielding, and total failure. Note that both the peak and residual strength of the MBM increased as the doping amount of aeolian sand increased, which is probably because of the impacted aeolian sand and the uniform reticular structure of the ettringite in the MBM. Compared with the high-water backfill material, only limited cementitious material and water resources are requested to cast the RBB, which provides more economical and environmental benefits for the application of the GER technique in the arid, semi-arid deserts or the Gobi mining areas.

Suggested Citation

  • Guodong Li & Hongzhi Wang & Zhaoxuan Liu & Honglin Liu & Haitian Yan & Zenwei Liu, 2022. "Effects of Aeolian Sand and Water−Cement Ratio on Performance of a Novel Mine Backfill Material," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:569-:d:1018521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi Wen & Jin Li & Kevin M. Mwenda & Daniel Ervin & Maya Chatterjee & David Lopez‐Carr, 2022. "Coal exploitation and income inequality: Testing the resource curse with econometric analyses of household survey data from northwestern China," Growth and Change, Wiley Blackwell, vol. 53(1), pages 452-469, March.
    2. Wang, Yong & Chen, Minjian & Yan, Long & Zhao, Yong & Deng, Wei, 2021. "A new method for quantifying threshold water tables in a phreatic aquifer feeding an irrigation district in northwestern China," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Ye-Shuang Xu & Shui-Long Shen & Zheng-Yin Cai & Guo-Yun Zhou, 2008. "The state of land subsidence and prediction approaches due to groundwater withdrawal in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 123-135, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).
    2. Bhattarai, Keshav & Adhikari, Ambika P., 2022. "Minimizing Surface Run-off, Improving Underground Water Recharging, and On-site Rain Harvesting in the Kathmandu Valley," SocArXiv tqfns, Center for Open Science.
    3. Xu-Wei Wang & Ye-Shuang Xu, 2022. "Investigation on the phenomena and influence factors of urban ground collapse in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 1-33, August.
    4. Wang, Yong & Zhao, Yong & Yan, Long & Deng, Wei & Zhai, Jiaqi & Chen, Minjian & Zhou, Fei, 2022. "Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Ya-Qiong Wang & Shao-Bing Zhang & Long-Long Chen & Yong-Li Xie & Zhi-Feng Wang, 2019. "Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    6. Yanbo Cao & Ya-ni Wei & Wen Fan & Min Peng & Liangliang Bao, 2020. "Experimental study of land subsidence in response to groundwater withdrawal and recharge in Changping District of Beijing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-17, May.
    7. Yong Liu & Hai-Jun Huang, 2013. "Characterization and mechanism of regional land subsidence in the Yellow River Delta, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 687-709, September.
    8. Chun-Yong Luo & Shui-Long Shen & Jie Han & Guan-Lin Ye & Suksun Horpibulsuk, 2015. "Hydrogeochemical environment of aquifer groundwater in Shanghai and potential hazards to underground infrastructures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 753-774, August.
    9. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    10. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    11. Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
    12. Ye-Shuang Xu & Yao Yuan & Shui-Long Shen & Zhen-Yu Yin & Huai-Na Wu & Lei Ma, 2015. "Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 281-296, August.
    13. Yong-Xia Wu & Tian-Liang Yang & Pei-Chao Li & Jin-Xin Lin, 2019. "Investigation of Groundwater Withdrawal and Recharge Affecting Underground Structures in the Shanghai Urban Area," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    14. Ahmed M. Youssef & Mazen M. Abu Abdullah & Biswajeet Pradhan & Ahmed F. D. Gaber, 2019. "Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA," Sustainability, MDPI, vol. 11(15), pages 1-16, August.
    15. Dongbo Li & Xiaolong Li & Xinlin He & Guang Yang & Yongjun Du & Xiaoqian Li, 2022. "Groundwater Dynamic Characteristics with the Ecological Threshold in the Northwest China Oasis," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    16. Ye-Shuang Xu & Shui-Long Shen & Dong-Jie Ren & Huai-Na Wu, 2016. "Analysis of Factors in Land Subsidence in Shanghai: A View Based on a Strategic Environmental Assessment," Sustainability, MDPI, vol. 8(6), pages 1-12, June.
    17. Yu Huang & Hualin Cheng, 2013. "The impact of climate change on coastal geological disasters in southeastern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 377-390, January.
    18. Ye-Shuang Xu & De-Xuan Zhang & Shui-Long Shen & Long-Zhu Chen, 2009. "Geo-hazards with characteristics and prevention measures along the coastal regions of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(3), pages 479-500, June.
    19. Ye-Shuang Xu & Run-Qiu Huang & Jie Han & Shui-Long Shen, 2013. "Evaluation of allowable withdrawn volume of groundwater based on observed data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 513-522, June.
    20. Guangyun Gao & Shaofeng Yao & Yujun Cui & Qingsheng Chen & Xianlin Zhang & Kewen Wang, 2018. "Zoning of confined aquifers inrush and quicksand in Shanghai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1341-1363, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:569-:d:1018521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.