IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v64y2012i1p873-886.html
   My bibliography  Save this article

Highway network restoration after the great flood in Thailand

Author

Listed:
  • Ponlathep Lertworawanich

Abstract

Flood is one of the common natural phenomena anywhere. In the second half of 2011, Thailand has recently faced with the most devastating flood of her modern history. More than 3,330 national highways are damaged by this flood. Some roads are heavily destroyed while others are partially damaged and emergency relieves cannot access to the flooded areas. Food and medicine distribution in the central part of the country has by large been disrupted. As a consequence, highway restoration is an urgent responsibility of road authorities. This study presents the sequential highway network restoration decision model when budgets and resources are unknown. Highways are restored one by one in sequence. To determine an optimal restoration sequence, the model is formulated as a dynamic program where the primary objective is to sequentially restore roadways to minimize the travel demand loss for the disconnected network. Once the network is connected, the secondary objective is to sequentially restore roadways to minimize the network travel time where traffic assignment onto the network is based on user equilibrium concept. The heuristic solution method using particle swarm optimization technique is provided for practical size problems. A sample network is examined to investigate the solution characteristics. It is found that the proposed algorithm can provide good practical solutions to the sequential highway network recovery problems and is incorporated to the Thailand highway maintenance management system. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Ponlathep Lertworawanich, 2012. "Highway network restoration after the great flood in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 873-886, October.
  • Handle: RePEc:spr:nathaz:v:64:y:2012:i:1:p:873-886
    DOI: 10.1007/s11069-012-0278-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0278-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0278-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholson, Alan & Du, Zhen-Ping, 1997. "Degradable transportation systems: An integrated equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 209-223, June.
    2. Du, Zhen-Ping & Nicholson, Alan, 1997. "Degradable transportation systems: Sensitivity and reliability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 225-237, June.
    3. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Fang & Xiangxiang Liao & Min Xie, 2016. "A hybrid risks-informed approach for the selection of supplier portfolio," International Journal of Production Research, Taylor & Francis Journals, vol. 54(7), pages 2019-2034, April.
    2. Milad Zamanifar & Timo Hartmann, 2020. "Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1-25, October.
    3. M. Kubilay Kelesoglu & Rasim Temur & Sezar Gülbaz & Nurdan Memisoglu Apaydin & Cevza Melek Kazezyılmaz-Alhan & Ilknur Bozbey, 2023. "Site assessment and evaluation of the structural damages after the flood disaster in the Western Black Sea Basin on August 11, 2021," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 587-618, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    2. Edrissi, Ali & Poorzahedy, Hossain & Nassiri, Habibollah & Nourinejad, Mehdi, 2013. "A multi-agent optimization formulation of earthquake disaster prevention and management," European Journal of Operational Research, Elsevier, vol. 229(1), pages 261-275.
    3. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    4. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    5. Nagae, Takeshi & Fujihara, Tomo & Asakura, Yasuo, 2012. "Anti-seismic reinforcement strategy for an urban road network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 813-827.
    6. Lertworawanich, Ponlathep & Dechasakulsom, Montri & Aursudkij, Bhanitiz, 2012. "Highway network restoration after disasters," 53rd Annual Transportation Research Forum, Tampa, Florida, March 15-17, 2012 207120, Transportation Research Forum.
    7. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    8. Paola Festa & Panos Pardalos, 2012. "Efficient solutions for the far from most string problem," Annals of Operations Research, Springer, vol. 196(1), pages 663-682, July.
    9. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    10. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    11. Qingzheng Xu & Na Wang & Lei Wang & Wei Li & Qian Sun, 2021. "Multi-Task Optimization and Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review," Mathematics, MDPI, vol. 9(8), pages 1-44, April.
    12. Stefanie Peer & Carl Koopmans & Erik T. Verhoef, 2010. "Predicting Travel Time Variability for Cost-Benefit Analysis," Tinbergen Institute Discussion Papers 10-071/3, Tinbergen Institute.
    13. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    15. Bell, Michael G. H., 2000. "A game theory approach to measuring the performance reliability of transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 533-545, August.
    16. Zhi-Chun Li & William Lam & S. Wong & Hai-Jun Huang & Dao-Li Zhu, 2008. "Reliability Evaluation for Stochastic and Time-dependent Networks with Multiple Parking Facilities," Networks and Spatial Economics, Springer, vol. 8(4), pages 355-381, December.
    17. Jun Pei & Bayi Cheng & Xinbao Liu & Panos M. Pardalos & Min Kong, 2019. "Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time," Annals of Operations Research, Springer, vol. 272(1), pages 217-241, January.
    18. Robin Lindsey & André de Palma & Pouya Rezaeini, 2022. "Tolls vs tradable permits for managing travel on a bimodal congested network with variable capacities and demands," THEMA Working Papers 2022-06, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
    20. Saydam, Cem & Aytug, Haldun, 2003. "Accurate estimation of expected coverage: revisited," Socio-Economic Planning Sciences, Elsevier, vol. 37(1), pages 69-80, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:64:y:2012:i:1:p:873-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.