IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i1d10.1007_s11069-020-04192-5.html
   My bibliography  Save this article

Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks

Author

Listed:
  • Milad Zamanifar

    (Technische Universität Berlin)

  • Timo Hartmann

    (Technische Universität Berlin)

Abstract

The purpose of this study is to analyze optimization-based decision-making models for the problem of Disaster Recovery Planning of Transportation Networks (DRPTN). In the past three decades, seminal optimization problems have been structured and solved for the critical and sensitive problem of DRPTN. The extent of our knowledge on the practicality of the methods and performance of results is however limited. To evaluate the applicability of those context-sensitive models in real-world situations, there is a need to examine the conceptual and technical structure behind the existing body of work. To this end, this paper performs a systematic search targeting DRPTN publications. Thereafter, we review the identified literature based on the four phases of the optimization-based decision-making modeling process as problem definition, problem formulation, problem-solving, and model validation. Then, through content analysis and descriptive statistics, we investigate the methodology of studies within each of these phases. Eventually, we detect and discuss four research improvement areas as [1] developing conceptual or systematic decision support in the selection of decision attributes and problem structuring, [2] integrating recovery problems with traffic management models, [3] avoiding uncertainty due to the type of solving algorithms, and [4] reducing subjectivity in the validation process of disaster recovery models. Finally, we provide suggestions as well as possible directions for future research.

Suggested Citation

  • Milad Zamanifar & Timo Hartmann, 2020. "Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1-25, October.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04192-5
    DOI: 10.1007/s11069-020-04192-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04192-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04192-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoxin Zhu & Guanghai Zhang & Baiqing Sun, 2019. "A comprehensive literature review of the demand forecasting methods of emergency resources from the perspective of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 65-82, May.
    2. Valerie Belton & Theodor Stewart, 2010. "Problem Structuring and Multiple Criteria Decision Analysis," International Series in Operations Research & Management Science, in: Matthias Ehrgott & José Rui Figueira & Salvatore Greco (ed.), Trends in Multiple Criteria Decision Analysis, chapter 0, pages 209-239, Springer.
    3. Xuanhua Xu & Yanxia Huang & Ke Chen, 2019. "Method for large group emergency decision making with complex preferences based on emergency similarity and interval consistency," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 45-64, May.
    4. Ralph L. Keeney & Robin S. Gregory, 2005. "Selecting Attributes to Measure the Achievement of Objectives," Operations Research, INFORMS, vol. 53(1), pages 1-11, February.
    5. Huang Xing, 2017. "The decision method of emergency supplies collection with fuzzy demand constraint under background of sudden disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 869-886, January.
    6. Craig A. Tovey, 2002. "Tutorial on Computational Complexity," Interfaces, INFORMS, vol. 32(3), pages 30-61, June.
    7. Chang, Stephanie E. & Nojima, Nobuoto, 2001. "Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 475-494, July.
    8. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    9. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    10. Widener, Michael J. & Horner, Mark W., 2011. "A hierarchical approach to modeling hurricane disaster relief goods distribution," Journal of Transport Geography, Elsevier, vol. 19(4), pages 821-828.
    11. Tsai-Yun Liao & Ta-Yin Hu & Yi-No Ko, 2018. "A resilience optimization model for transportation networks under disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 469-489, August.
    12. Vasily Lubashevskiy & Takeru Suzuki & Taro Kanno & Kazuo Furuta, 2017. "Recovery of urban socio-technical systems after disaster: quasi-optimality of reactive decision-making based planning," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 65-77, November.
    13. Ponlathep Lertworawanich, 2012. "Highway network restoration after the great flood in Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 873-886, October.
    14. Min-Ho Ha & Zaili Yang, 2018. "Modelling Interdependency Among Attributes in MCDM: Its Application in Port Performance Measurement," International Series in Operations Research & Management Science, in: Paul Tae-Woo Lee & Zaili Yang (ed.), Multi-Criteria Decision Making in Maritime Studies and Logistics, chapter 0, pages 323-354, Springer.
    15. Farid Kadri & B. Birregah & Eric Chatelet, 2014. "The Impact of Natural Disasters on Critical Infrastructures: A Domino Effect-based Study," Post-Print hal-02365385, HAL.
    16. William T. Morris, 1967. "On the Art of Modeling," Management Science, INFORMS, vol. 13(12), pages 707-717, August.
    17. Chao Yin, 2020. "Hazard assessment and regionalization of highway flood disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 535-550, January.
    18. E. E. Koks & J. Rozenberg & C. Zorn & M. Tariverdi & M. Vousdoukas & S. A. Fraser & J. W. Hall & S. Hallegatte, 2019. "A global multi-hazard risk analysis of road and railway infrastructure assets," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    19. Mark Horner & Michael Widener, 2011. "The effects of transportation network failure on people’s accessibility to hurricane disaster relief goods: a modeling approach and application to a Florida case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1619-1634, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lydia Novoszel & Tina Wakolbinger, 2022. "Meta-analysis of Supply Chain Disruption Research," SN Operations Research Forum, Springer, vol. 3(1), pages 1-25, March.
    2. Milad Zamanifar & Timo Hartmann, 2021. "A prescriptive framework for recommending decision attributes of infrastructure disaster recovery problems," Environment Systems and Decisions, Springer, vol. 41(4), pages 633-650, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    2. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    3. Milad Zamanifar & Timo Hartmann, 2021. "A prescriptive framework for recommending decision attributes of infrastructure disaster recovery problems," Environment Systems and Decisions, Springer, vol. 41(4), pages 633-650, December.
    4. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    5. Yu Han & Changjie Chen & Zhong-Ren Peng & Pallab Mozumder, 2022. "Evaluating impacts of coastal flooding on the transportation system using an activity-based travel demand model: a case study in Miami-Dade County, FL," Transportation, Springer, vol. 49(1), pages 163-184, February.
    6. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong, 2015. "Analysis of dynamic road risk for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 171-183.
    7. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    8. Rodrigues, Teresa C. & Montibeller, Gilberto & Oliveira, Mónica D. & Bana e Costa, Carlos A., 2017. "Modelling multicriteria value interactions with Reasoning Maps," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1054-1071.
    9. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    10. Timperio, Giuseppe & Kundu, Tanmoy & Klumpp, Matthias & de Souza, Robert & Loh, Xiu Hui & Goh, Kelvin, 2022. "Beneficiary-centric decision support framework for enhanced resource coordination in humanitarian logistics: A case study from ASEAN," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    11. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    12. Baskaya, Serhat & Ertem, Mustafa Alp & Duran, Serhan, 2017. "Pre-positioning of relief items in humanitarian logistics considering lateral transhipment opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 50-60.
    13. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    14. Marttunen, Mika & Haag, Fridolin & Belton, Valerie & Mustajoki, Jyri & Lienert, Judit, 2019. "Methods to inform the development of concise objectives hierarchies in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 277(2), pages 604-620.
    15. Carland, Corinne & Goentzel, Jarrod & Montibeller, Gilberto, 2018. "Modeling the values of private sector agents in multi-echelon humanitarian supply chains," European Journal of Operational Research, Elsevier, vol. 269(2), pages 532-543.
    16. Eva D. Regnier & Cameron A. MacKenzie, 2019. "The Hurricane Decision Simulator: A Tool for Marine Forces in New Orleans to Practice Operations Management in Advance of a Hurricane," Service Science, INFORMS, vol. 21(1), pages 103-120, January.
    17. Ming-Kuan Tsai & Nie-Jia Yau, 2013. "Improving information access for emergency response in disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 343-354, March.
    18. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    19. Juan Rivera & H. Afsar & Christian Prins, 2015. "A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem," Computational Optimization and Applications, Springer, vol. 61(1), pages 159-187, May.
    20. Nilay Noyan & Burcu Balcik & Semih Atakan, 2016. "A Stochastic Optimization Model for Designing Last Mile Relief Networks," Transportation Science, INFORMS, vol. 50(3), pages 1092-1113, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:1:d:10.1007_s11069-020-04192-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.