IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i1p261-275.html
   My bibliography  Save this article

A multi-agent optimization formulation of earthquake disaster prevention and management

Author

Listed:
  • Edrissi, Ali
  • Poorzahedy, Hossain
  • Nassiri, Habibollah
  • Nourinejad, Mehdi

Abstract

Natural earthquake disasters are unprecedented incidents which take many lives as a consequence and cause major damages to lifeline infrastructures. Various agencies in a country are responsible for reducing such adverse impacts within specific budgets. These responsibilities range from before to after the incident, targeting one of the main phases of disaster management (mitigation, preparedness, and response). Use of OR in disaster management and coordination of its phases has been mostly ignored and highly recommended in former reviews. This paper presents a formulation to coordinate three main agencies and proposes a heuristic approach to solve the different introduced sub-problems. The results show an improvement of 7.5–24% when the agencies are coordinated.

Suggested Citation

  • Edrissi, Ali & Poorzahedy, Hossain & Nassiri, Habibollah & Nourinejad, Mehdi, 2013. "A multi-agent optimization formulation of earthquake disaster prevention and management," European Journal of Operational Research, Elsevier, vol. 229(1), pages 261-275.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:261-275
    DOI: 10.1016/j.ejor.2013.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713002166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Beraldi, P. & Bruni, M. E. & Conforti, D., 2004. "Designing robust emergency medical service via stochastic programming," European Journal of Operational Research, Elsevier, vol. 158(1), pages 183-193, October.
    3. de la Torre, Luis E. & Dolinskaya, Irina S. & Smilowitz, Karen R., 2012. "Disaster relief routing: Integrating research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 88-97.
    4. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    5. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    6. Du, Zhen-Ping & Nicholson, Alan, 1997. "Degradable transportation systems: Sensitivity and reliability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 225-237, June.
    7. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    8. David Adams & E.M. Hastings, 2001. "Assessing Institutional Relations in Development Partnerships: The Land Development Corporation and the Hong Kong Government prior to 1997," Urban Studies, Urban Studies Journal Limited, vol. 38(9), pages 1473-1492, August.
    9. I Turok, 1992. "Property-Led Urban Regeneration: Panacea or Placebo?," Environment and Planning A, , vol. 24(3), pages 361-379, March.
    10. Nicholson, Alan & Du, Zhen-Ping, 1997. "Degradable transportation systems: An integrated equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 209-223, June.
    11. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adsanver, Birce & Balcik, Burcu & Bélanger, Valérie & Rancourt, Marie-Ève, 2024. "Operations research approaches for improving coordination, cooperation, and collaboration in humanitarian relief chains: A framework and literature review," European Journal of Operational Research, Elsevier, vol. 319(2), pages 384-398.
    2. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    3. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    4. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods," European Journal of Operational Research, Elsevier, vol. 264(3), pages 978-993.
    5. Edrissi, Ali & Nourinejad, Mehdi & Roorda, Matthew J., 2015. "Transportation network reliability in emergency response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 56-73.
    6. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    7. Rezaei-Malek, Mohammad & Tavakkoli-Moghaddam, Reza & Cheikhrouhou, Naoufel & Taheri-Moghaddam, Alireza, 2016. "An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 485-509.
    8. Torabi, S.A. & Mansouri, S.A., 2015. "Integrated business continuity and disaster recovery planning: Towards organizational resilienceAuthor-Name: Sahebjamnia, N," European Journal of Operational Research, Elsevier, vol. 242(1), pages 261-273.
    9. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    10. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    11. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    12. Deepa Mishra & Sameer Kumar & Elkafi Hassini, 2019. "Current trends in disaster management simulation modelling research," Annals of Operations Research, Springer, vol. 283(1), pages 1387-1411, December.
    13. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Preece, Gary & Shaw, Duncan & Hayashi, Haruo, 2015. "Application of the Viable System Model to analyse communications structures: A case study of disaster response in Japan," European Journal of Operational Research, Elsevier, vol. 243(1), pages 312-322.
    15. Lijo John & Anand Gurumurthy & Arqum Mateen & Gopalakrishnan Narayanamurthy, 2022. "Improving the coordination in the humanitarian supply chain: exploring the role of options contract," Annals of Operations Research, Springer, vol. 319(1), pages 15-40, December.
    16. Yi Lu & Jiuping Xu, 2014. "The progress of emergency response and rescue in China: a comparative analysis of Wenchuan and Lushan earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 421-444, November.
    17. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    18. Malin Song & Qianqian Du, 2019. "Analysis and exploration of damage-reduction measures for flood disasters in China," Annals of Operations Research, Springer, vol. 283(1), pages 795-810, December.
    19. Jiuping Xu & Jiuzhou Dai & Renqiao Rao & Huaidong Xie & Yi Lu, 2016. "Critical Systems Thinking on the Inefficiency in Post-Earthquake Relief: A Practice in Longmen Shan Fault Area," Systemic Practice and Action Research, Springer, vol. 29(5), pages 425-448, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    2. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    3. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    4. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    5. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    6. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    7. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    8. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    9. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    10. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    11. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    12. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    13. de la Torre, Luis E. & Dolinskaya, Irina S. & Smilowitz, Karen R., 2012. "Disaster relief routing: Integrating research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 88-97.
    14. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    15. Anna Nagurney & Mojtaba Salarpour & June Dong & Ladimer S. Nagurney, 2020. "A Stochastic Disaster Relief Game Theory Network Model," SN Operations Research Forum, Springer, vol. 1(2), pages 1-33, June.
    16. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    17. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    18. Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.
    19. Ahmad Mohamadi & Saeed Yaghoubi & Mir Saman Pishvaee, 2019. "Fuzzy multi-objective stochastic programming model for disaster relief logistics considering telecommunication infrastructures: a case study," Operational Research, Springer, vol. 19(1), pages 59-99, March.
    20. Oscar Rodríguez-Espíndola & Juan Gaytán, 2015. "Scenario-based preparedness plan for floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1241-1262, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:261-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.