IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i9d10.1007_s11069-024-06541-0.html
   My bibliography  Save this article

Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index

Author

Listed:
  • Reza Esmaili

    (University of Mazandaran)

  • Seyedeh Atefeh Karipour

    (University of Mazandaran)

Abstract

Preparing a map of flood hazard is susceptibility an important step in flood risk management. Therefore, it is necessary to use methods that reduce errors and increase the accuracy of identifying flood hazard areas. This study was conducted to prepare a map of the flood hazard index (FHI) and evaluate subjective and objective multicriteria decision analysis (MCDA) weighting methods. Talar basin, which is located in the north of Iran, has been investigated as a case study for this research. Seven factors influencing flood, including elevation, slope, flow accumulation, distance from the river, rainfall intensity, land cover, and geology, were considered to create a flood hazard map. The weighting of these factors has been performed by the Analytical Hierarchy Process (AHP), sensitivity analysis of AHP (AHPS), Shannon Entropy (SE), and Entropy-AHP. The maps created with the data of past floods were validated with the Accuracy index and Kappa index methods. The results showed that the FHI-SE method was more accurate than others, with an accuracy value of 0.979. FHI-SEA, FHIS, and FHI methods were placed in the next priorities, respectively. Based on the SE method, the factors of distance from the river, elevation, and slope have respectively obtained the highest weight value in creating the flood hazard index map. Distance from river variable was classified separately for mountain and plain regions to reduce the overestimation of flood hazard areas in mountainous areas. The objective weighting method has provided higher accuracy than the subjective weighting method, such as AHP.

Suggested Citation

  • Reza Esmaili & Seyedeh Atefeh Karipour, 2024. "Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8619-8638, July.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:9:d:10.1007_s11069-024-06541-0
    DOI: 10.1007/s11069-024-06541-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06541-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06541-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Preeti Ramkar & Sanjaykumar M. Yadav, 2021. "Flood risk index in data-scarce river basins using the AHP and GIS approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1119-1140, October.
    2. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    3. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    4. Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    5. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    6. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    7. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, July-Dece.
    8. Huali Chen & Yuka Ito & Marie Sawamukai & Tomochika Tokunaga, 2015. "Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 105-120, August.
    9. Rofiat Bunmi Mudashiru & Nuridah Sabtu & Rozi Abdullah & Azlan Saleh & Ismail Abustan, 2022. "A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1903-1939, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saumya Arya & Arun Kumar, 2023. "AHP GIS-aided flood hazard mapping and surface runoff estimation in Gurugram, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2963-2987, July.
    2. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    3. Irem Sahmutoglu & Alev Taskin & Ertugrul Ayyildiz, 2023. "Assembly area risk assessment methodology for post-flood evacuation by integrated neutrosophic AHP-CODAS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1071-1103, March.
    4. Vikash Shivhare & Alok Kumar & Reetesh Kumar & Satyanarayan Shashtri & Javed Mallick & Chander Kumar Singh, 2024. "Flood susceptibility and flood frequency modeling for lower Kosi Basin, India using AHP and Sentinel-1 SAR data in geospatial environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11579-11610, October.
    5. Rofiat Bunmi Mudashiru & Nuridah Sabtu & Rozi Abdullah & Azlan Saleh & Ismail Abustan, 2022. "A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1903-1939, July.
    6. Mustapha Ikirri & Farid Faik & Fatima Zahra Echogdali & Isabel Margarida Horta Ribeiro Antunes & Mohamed Abioui & Kamal Abdelrahman & Mohammed S. Fnais & Abderrahmane Wanaim & Mouna Id-Belqas & Said B, 2022. "Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco," Land, MDPI, vol. 11(8), pages 1-20, July.
    7. Manh Xuan Trinh & Frank Molkenthin, 2021. "Flood hazard mapping for data-scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal-spatial resolution remote sensing precipitation data, and satellite imageries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 441-469, October.
    8. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    9. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    10. Martina Artmann, 2013. "Response-Efficiency-Assessment: A Conceptual Framework For Rating Policy'S Efficiency To Meet Sustainable Development On The Example Of Soil Sealing Management," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33.
    11. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    12. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    13. Mohammad Reza Salehizadeh & Mahdi Amidi Koohbijari & Hassan Nouri & Akın Taşcıkaraoğlu & Ozan Erdinç & João P. S. Catalão, 2019. "Bi-Objective Optimization Model for Optimal Placement of Thyristor-Controlled Series Compensator Devices," Energies, MDPI, vol. 12(13), pages 1-16, July.
    14. You, Heyuan & Zhang, Xiaoling, 2017. "Sustainable livelihoods and rural sustainability in China: Ecologically secure, economically efficient or socially equitable?," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 1-13.
    15. Gözaçan Nazlıcan & Lafci Çisem, 2020. "Evaluation of Key Performance Indicators of Logistics Firms," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 24-32, February.
    16. Jiabin Liu & Ji Han, 2017. "Does a Certain Rule Exist in the Long-Term Change of a City’s Livability? Evidence from New York, Tokyo, and Shanghai," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    17. Clara Moreira Senne & Josiane Palma Lima & Fábio Favaretto, 2021. "An Index for the Sustainability of Integrated Urban Transport and Logistics: The Case Study of São Paulo," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    18. Sanjib Mondal & Pritam Ghosh & Pratima Rohatgi, 2023. "Village‐level livelihood security: A case study on a wasteland‐dominated forest fringe region of rural India," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(5), pages 1019-1036, June.
    19. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    20. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:9:d:10.1007_s11069-024-06541-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.