IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i3d10.1007_s11069-016-2258-4.html
   My bibliography  Save this article

Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China

Author

Listed:
  • Shifa Chen

    (Fujian Normal University
    Shaoguan University)

  • Xuan Zha

    (Fujian Normal University
    Fujian Normal University)

Abstract

Soil erosion by water is a serious environmental problem in southern China, particularly in the Zhuxi watershed in Changting County of the Fujian Province, which is characterized by highly erosive rainfall, severely undulating terrain, porous soil, scarce vegetation, and excessive human activity. The evaluation of soil erosion vulnerability is important for soil resources and sustainable development. Using the Zhuxi watershed as an example of soil erosion problems, this study uses the analytic hierarchy process to evaluate soil erosion vulnerability in a coupled human and natural system to determine the proportions of factors in an index system based on the experience of experts. Using GIS, we confirmed that the factors in the utilized index system were exposure, sensitivity, and adaptive capacity to soil erosion. All of these factors were combined to determine the soil erosion vulnerability. The results indicated severe soil erosion vulnerability over large areas. The areas vulnerable to soil erosion accounted for 57.98 % of the watershed; and the areas damaged to a high or very high extent account for over 12.08 % of the watershed. The results also show that the soil erosion vulnerability varies in different locations. For example, soil erosion vulnerability is lower in the eastern part of the study area and higher in the western part. Therefore, an effective approach to reduce soil erosion vulnerability would be to implement measures for regional soil and water conservation and sustainable development.

Suggested Citation

  • Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:3:d:10.1007_s11069-016-2258-4
    DOI: 10.1007/s11069-016-2258-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2258-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2258-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shabana Khan, 2012. "Vulnerability assessments and their planning implications: a case study of the Hutt Valley, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1587-1607, November.
    2. Amit Kumar & Mamta Devi & Benidhar Deshmukh, 2014. "Integrated Remote Sensing and Geographic Information System Based RUSLE Modelling for Estimation of Soil Loss in Western Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3307-3317, August.
    3. Rahman, Md. Rejaur & Shi, Z.H. & Chongfa, Cai, 2009. "Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies," Ecological Modelling, Elsevier, vol. 220(13), pages 1724-1734.
    4. Shen, Z.Y. & Gong, Y.W. & Li, Y.H. & Hong, Q. & Xu, L. & Liu, R.M., 2009. "A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 96(10), pages 1435-1442, October.
    5. Krishna Bhandari & Jagannath Aryal & Rotchanatch Darnsawasdi, 2015. "A geospatial approach to assessing soil erosion in a watershed by integrating socio-economic determinants and the RUSLE model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 321-342, January.
    6. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Lina & Wang, Jun & Zhang, Xiao & Ying, Lingxiao & Zhu, Chuxin, 2020. "Effects of agricultural land consolidation on soil conservation service in the Hilly Region of Southeast China – Implications for land management," Land Use Policy, Elsevier, vol. 95(C).
    2. Kai Gao & Zhigang Kong & Yanqing Li & Fei Zhao & Baoxin Cai & Dehua Shi & Ren Wang, 2024. "Experimental Study on Runoff and Sediment Production of the Fully Weathered Granite Backfill Slope under Heavy Rain in Longling, Yunnan Province," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
    3. Shanshan Xu & Qinghe Zhao & Shengyan Ding & Mingzhou Qin & Lixin Ning & Xiaoyu Ji, 2018. "Improving Soil and Water Conservation of Riparian Vegetation Based on Landscape Leakiness and Optimal Vegetation Pattern," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    4. Yanyuan Zhang & Cong Xu & Min Xia, 2021. "Can Land Consolidation Reduce the Soil Erosion of Agricultural Land in Hilly Areas? Evidence from Lishui District, Nanjing City," Land, MDPI, vol. 10(5), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    2. I. Gaubi & A. Chaabani & A. Ben Mammou & M. H. Hamza, 2017. "A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 219-239, March.
    3. Shifa Chen & Wen Liu & Yonghui Bai & Xiaoying Luo & Hangfei Li & Xuan Zha, 2021. "Evaluation of watershed soil erosion hazard using combination weight and GIS: a case study from eroded soil in Southern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1603-1628, November.
    4. Arun Mondal & Deepak Khare & Sananda Kundu, 2016. "Impact assessment of climate change on future soil erosion and SOC loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1515-1539, July.
    5. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.
    6. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    7. Chuhong Shen & Kangning Xiong & Tian Shu, 2022. "Dynamic Evolution and Quantitative Attribution of Soil Erosion Based on Slope Units: A Case Study of a Karst Plateau-Gorge Area in SW China," Land, MDPI, vol. 11(8), pages 1-18, July.
    8. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    9. Nektarios N. Kourgialas & Georgios C. Koubouris & George P. Karatzas & Ioannis Metzidakis, 2016. "Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 65-81, October.
    10. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    11. Cailin Li & Yue Wang & Baoyun Guo & Yihui Lu & Na Sun, 2024. "Street Community-Level Urban Flood Risk Assessment Based on Numerical Simulation," Sustainability, MDPI, vol. 16(16), pages 1-32, August.
    12. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    13. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    14. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.
    15. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    16. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    17. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    18. Kylie Mason & Kirstin Lindberg & Carolin Haenfling & Allan Schori & Helene Marsters & Deborah Read & Barry Borman, 2021. "Social Vulnerability Indicators for Flooding in Aotearoa New Zealand," IJERPH, MDPI, vol. 18(8), pages 1-31, April.
    19. Cailin Li & Na Sun & Yihui Lu & Baoyun Guo & Yue Wang & Xiaokai Sun & Yukai Yao, 2022. "Review on Urban Flood Risk Assessment," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    20. Giorgos Mallinis & Ioannis Z. Gitas & Georgios Tasionas & Fotis Maris, 2016. "Multitemporal Monitoring of Land Degradation Risk Due to Soil Loss in a Fire-Prone Mediterranean Landscape Using Multi-decadal Landsat Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1255-1269, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:3:d:10.1007_s11069-016-2258-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.