IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1178-d874260.html
   My bibliography  Save this article

Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco

Author

Listed:
  • Mustapha Ikirri

    (Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco)

  • Farid Faik

    (Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco)

  • Fatima Zahra Echogdali

    (Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco)

  • Isabel Margarida Horta Ribeiro Antunes

    (Institute of Earth Sciences, Pole of University of Minho, 4710-057 Braga, Portugal)

  • Mohamed Abioui

    (Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco)

  • Kamal Abdelrahman

    (Department of Geology & Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Mohammed S. Fnais

    (Department of Geology & Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Abderrahmane Wanaim

    (Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco)

  • Mouna Id-Belqas

    (Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco)

  • Said Boutaleb

    (Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco)

  • Kochappi Sathyan Sajinkumar

    (Department of Geology, University of Kerala, Thiruvananthapuram 695 581, Kerala, India
    Department of Geological & Mining Engineering & Sciences, Michigan Technological University, Houghton, MI 49931, USA)

  • Adolfo Quesada-Román

    (Department of Geography and Water and Global Change Observatory, University of Costa Rica, San José 2060, Costa Rica)

Abstract

During the last decade, climate change has generated extreme rainfall events triggering flash floods in short periods worldwide. The delimitation of flood zones by detailed mapping generally makes it possible to avoid human and economic losses, especially in regions at high risk of flooding. The Taguenit basin, located in southern Morocco, is a particular case. The mapping of the flood zones of this basin by the method of the Flood Hazard Index (FHI) in a GIS geographic information systems environment was based on the multi-criteria analysis, taking into consideration the seven parameters influencing these extreme phenomena, namely rainfall, slope, flow accumulation, drainage network density, distance from rivers, permeability, and land use. Average annual rainfall data for 37 years (1980 to 2016) was used in this study for floodplain mapping. A weight was calculated for each parameter using the Analytical Hierarchy Process (AHP) method. The combination of the maps of the different parameters made it possible to draw up a final map classified into five risk intervals: very high, high, moderate, lower and very lower presenting, respectively, 8.04%, 20.63%, 31.47%, 15.36%, and 24.50% of the area of the basin. The reliability of this method was tested by a Flood susceptibility analysis. The results generated by the Flood Hazard Index (FHI) model are similar to those of previous historical events. Realistic and applicable solutions have been proposed to minimize the impact of these floods as much as possible.

Suggested Citation

  • Mustapha Ikirri & Farid Faik & Fatima Zahra Echogdali & Isabel Margarida Horta Ribeiro Antunes & Mohamed Abioui & Kamal Abdelrahman & Mohammed S. Fnais & Abderrahmane Wanaim & Mouna Id-Belqas & Said B, 2022. "Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco," Land, MDPI, vol. 11(8), pages 1-20, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1178-:d:874260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atthanan Lekuthai & Suphat Vongvisessomjai, 2001. "Intangible Flood Damage Quantification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(5), pages 343-362, October.
    2. Thomas L. Saaty & Luis G. Vargas, 2012. "The Seven Pillars of the Analytic Hierarchy Process," International Series in Operations Research & Management Science, in: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, edition 2, chapter 0, pages 23-40, Springer.
    3. Hallegatte, Stephane & Hourcade, Jean-Charles & Dumas, Patrice, 2007. "Why economic dynamics matter in assessing climate change damages: Illustration on extreme events," Ecological Economics, Elsevier, vol. 62(2), pages 330-340, April.
    4. Abhishek Ghosh & Shyamal Kumar Kar, 2018. "Correction to: Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 369-369, October.
    5. Abhishek Ghosh & Shyamal Kumar Kar, 2018. "Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 349-368, October.
    6. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    7. Cools, Jan & Innocenti, Demetrio & O’Brien, Sarah, 2016. "Lessons from flood early warning systems," Environmental Science & Policy, Elsevier, vol. 58(C), pages 117-122.
    8. Thomas L. Saaty, 1990. "An Exposition of the AHP in Reply to the Paper "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 259-268, March.
    9. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, April.
    10. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jobaed Ragib Zaman & C. Emdad Haque & David Walker, 2022. "Local-Level Flood Hazard Management in Canada: An Assessment of Institutional Structure and Community Engagement in the Red River Valley of Manitoba," Geographies, MDPI, vol. 2(4), pages 1-26, December.
    2. Minh Pham Quang & Krti Tallam, 2022. "Predicting Flood Hazards in the Vietnam Central Region: An Artificial Neural Network Approach," Sustainability, MDPI, vol. 14(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    2. Pranay Paul & Rumki Sarkar, 2022. "Flood susceptible surface detection using geospatial multi-criteria framework for management practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3015-3041, December.
    3. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    4. Tamer F. Abdelmaguid & Waleed Elrashidy, 2019. "Halting decisions for gas pipeline construction projects using AHP: a case study," Operational Research, Springer, vol. 19(1), pages 179-199, March.
    5. Hubert Hirwa & Qiuying Zhang & Yunfeng Qiao & Yu Peng & Peifang Leng & Chao Tian & Sayidjakhon Khasanov & Fadong Li & Alphonse Kayiranga & Fabien Muhirwa & Auguste Cesar Itangishaka & Gabriel Habiyare, 2021. "Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    6. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    7. Muhammad Atiq Ur Rehman Tariq & Cheuk Yin Wai & Nitin Muttil, 2020. "Vulnerability Assessment of Ubiquitous Cities Using the Analytic Hierarchy Process," Future Internet, MDPI, vol. 12(12), pages 1-21, December.
    8. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).
    9. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    10. Reza Esmaili & Seyedeh Atefeh Karipour, 2024. "Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8619-8638, July.
    11. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    12. Md Monjurul Islam & Tofael Ahamed & Ryozo Noguchi, 2018. "Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production," Sustainability, MDPI, vol. 10(6), pages 1-28, May.
    13. Hadi Soltanifard & Elham Jafari, 2019. "A conceptual framework to assess ecological quality of urban green space: a case study in Mashhad city, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1781-1808, August.
    14. Angeliki Tsantili & Irene Koronaki & Vasilis Polydoros, 2023. "Maximizing Energy Performance of University Campus Buildings through BIM Software and Multicriteria Optimization Methods," Energies, MDPI, vol. 16(5), pages 1-20, February.
    15. B. Senakumari Arunnima & Dharmaseelan Bijulal & R. Sudhir Kumar, 2023. "Open Innovation Intellectual Property Risk Maturity Model: An Approach to Measure Intellectual Property Risks of Software Firms Engaged in Open Innovation," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    16. Mostafa Dastorani, 2022. "Application of fuzzy-AHP method for desertification assessment in Sabzevar area of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 187-205, May.
    17. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    18. Dinesh Seth & Minhaj Ahemad A. Rehman, 2022. "Critical success factors‐based strategy to facilitate green manufacturing for responsible business: An application experience in Indian context," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 2786-2806, November.
    19. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    20. Suddhasil Bose & Subhra Halder, 2023. "Identification of crop suitable land using geospatial techniques and assessment with socio-economic factors—case study from India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 229-253, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1178-:d:874260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.