IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i3d10.1007_s11069-022-05250-w.html
   My bibliography  Save this article

A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia

Author

Listed:
  • Rofiat Bunmi Mudashiru

    (Universiti Sains Malaysia
    Federal Polytechnic Offa)

  • Nuridah Sabtu

    (Universiti Sains Malaysia)

  • Rozi Abdullah

    (Universiti Sains Malaysia)

  • Azlan Saleh

    (Universiti Teknologi Malaysia)

  • Ismail Abustan

    (Universiti Sains Malaysia)

Abstract

Flooding is a major and recurring natural disaster in Northeast Penang, Malaysia. The ability to effectively identify flood hazard areas represents an important part of flood risk analysis and management. There is a need for a structured study that incorporates stakeholders’ inputs such as the multi-criteria decision-making (MCDM) model to delineate flood-prone locations to support the management and mitigation measures of flooding in this area. Previous studies have compared the analytic hierarchy process (AHP) and fuzzy AHP methods in flood hazard mapping. Therefore, this study proposes to test the predicting capability of three MCDM models in the determination of flood-prone areas: the AHP, triangular fuzzy AHP (TF-AHP), and trapezoidal fuzzy AHP (TZF-AHP) in this area. The methodology applies nine flood-causative factors (FCFs) which include drainage density, elevation, land use, slope, rainfall, flood depth, distance from rivers, lithology, and distance from inundation. The resulting flood hazard maps showed a closer similarity between the TF-AHP and TZ-AHP methods compared to the AHP method for flood hazard mapping. The sensitivity analysis indicated that the AHP was more accurate than the fuzzy AHP models based on the weight estimation. The validation results showed that 100%, 93%, and 93% of the actual flood events occurred in the ‘moderate’ to ‘very high’ flood hazard areas for the AHP, TF-AHP, and TZF-AHP, respectively. Overall results showed the accuracy of all three models in modeling flood hazard areas. Therefore, the findings can be adopted as a tool in making informed and accurate policies about flood management for effective climate mitigation decision making.

Suggested Citation

  • Rofiat Bunmi Mudashiru & Nuridah Sabtu & Rozi Abdullah & Azlan Saleh & Ismail Abustan, 2022. "A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1903-1939, July.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05250-w
    DOI: 10.1007/s11069-022-05250-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05250-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05250-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michalis Diakakis, 2011. "A method for flood hazard mapping based on basin morphometry: application in two catchments in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 803-814, March.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    4. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.
    5. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    6. Lootsma, F. A., 1980. "Saaty's priority theory and the nomination of a senior professor in operations Research," European Journal of Operational Research, Elsevier, vol. 4(6), pages 380-388, June.
    7. Romulus Costache, 2019. "Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3239-3256, July.
    8. Huali Chen & Yuka Ito & Marie Sawamukai & Tomochika Tokunaga, 2015. "Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 105-120, August.
    9. Xiao-ling Yang & Jie-hua Ding & Hui Hou, 2013. "Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 657-674, September.
    10. Hang Ha & Chinh Luu & Quynh Duy Bui & Duy-Hoa Pham & Tung Hoang & Viet-Phuong Nguyen & Minh Tuan Vu & Binh Thai Pham, 2021. "Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1247-1270, October.
    11. Francesca Franci & Gabriele Bitelli & Emanuele Mandanici & Diofantos Hadjimitsis & Athos Agapiou, 2016. "Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 31-51, October.
    12. Tufan Demirel & Nihan Çetin Demirel & Cengiz Kahraman, 2008. "Fuzzy Analytic Hierarchy Process and its Application," Springer Optimization and Its Applications, in: Cengiz Kahraman (ed.), Fuzzy Multi-Criteria Decision Making, pages 53-83, Springer.
    13. Yves Hategekimana & Lijun Yu & Yueping Nie & Jianfeng Zhu & Fang Liu & Fei Guo, 2018. "Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1137-1153, June.
    14. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2011. "Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1261-1276, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Esmaili & Seyedeh Atefeh Karipour, 2024. "Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8619-8638, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Ha & Quynh Duy Bui & Huy Dinh Nguyen & Binh Thai Pham & Trinh Dinh Lai & Chinh Luu, 2023. "A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1101-1130, February.
    2. Yangfan Xiao & Shanzhen Yi & Zhongqian Tang, 2018. "A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3317-3335, August.
    3. Saumya Arya & Arun Kumar, 2023. "AHP GIS-aided flood hazard mapping and surface runoff estimation in Gurugram, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2963-2987, July.
    4. Kadriye Burcu Yavuz Kumlu & Şule Tüdeş, 2019. "Determination of earthquake-risky areas in Yalova City Center (Marmara region, Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order pr," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 999-1018, April.
    5. Ireneusz Laks & Zbigniew Walczak, 2020. "Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland)," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    6. Mohammad Ebrahim Banihabib & Mohammad Hadi Shabestari, 2017. "Fuzzy Hybrid MCDM Model for Ranking the Agricultural Water Demand Management Strategies in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 495-513, January.
    7. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    8. Mahmoud M. Abd-el-Kader & Ahmed M. El-Feky & Mohamed Saber & Maged M. AlHarbi & Abed Alataway & Faisal M. Alfaisal, 2023. "Designating Appropriate Areas for Flood Mitigation and Rainwater Harvesting in Arid Region Using a GIS-based Multi-criteria Decision Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1083-1108, February.
    9. Muamer Abuzwidah & Ahmed Elawady & Ayat Gamal Ashour & Abdullah Gokhan Yilmaz & Abdallah Shanableh & Waleed Zeiada, 2024. "Flood Risk Assessment for Sustainable Transportation Planning and Development under Climate Change: A GIS-Based Comparative Analysis of CMIP6 Scenarios," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    10. Ziyue Zeng & Guoqiang Tang & Di Long & Chao Zeng & Meihong Ma & Yang Hong & Hui Xu & Jing Xu, 2016. "A cascading flash flood guidance system: development and application in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2071-2093, December.
    11. Hong Ngoc Nguyen & Hiroatsu Fukuda & Minh Nguyet Nguyen, 2024. "Assessment of the Susceptibility of Urban Flooding Using GIS with an Analytical Hierarchy Process in Hanoi, Vietnam," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    12. Kerim Koc & Zeynep Işık, 2020. "A multi-agent-based model for sustainable governance of urban flood risk mitigation measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1079-1110, October.
    13. Chinh Luu & Hieu Xuan Tran & Binh Thai Pham & Nadhir Al-Ansari & Thai Quoc Tran & Nga Quynh Duong & Nam Hai Dao & Lam Phuong Nguyen & Huu Duy Nguyen & Huong Thu Ta & Hiep Van Le & Jason von Meding, 2020. "Framework of Spatial Flood Risk Assessment for a Case Study in Quang Binh Province, Vietnam," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    14. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    15. Dibyandu Roy & Anirban Dhar & Venkappayya R. Desai, 2024. "A grey fuzzy analytic hierarchy process-based flash flood vulnerability assessment in an ungauged Himalayan watershed," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18181-18206, July.
    16. Hariklia D. Skilodimou & George D. Bathrellos & Dimitrios E. Alexakis, 2021. "Flood Hazard Assessment Mapping in Burned and Urban Areas," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    17. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    18. Efthimios Karymbalis & Maria Andreou & Dimitrios-Vasileios Batzakis & Konstantinos Tsanakas & Sotirios Karalis, 2021. "Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process for Flood-Hazard Assessment in the Megalo Rema River Catchment (East Attica, Greece)," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    19. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    20. Anagnostopoulos, K.P. & Petalas, C., 2011. "A fuzzy multicriteria benefit-cost approach for irrigation projects evaluation," Agricultural Water Management, Elsevier, vol. 98(9), pages 1409-1416, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05250-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.