IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v29y2003i3p587-602.html
   My bibliography  Save this article

A Human Damage Prediction Method for Tsunami Disasters Incorporating Evacuation Activities

Author

Listed:
  • T. Sugimoto
  • H. Murakami
  • Y. Kozuki
  • K. Nishikawa
  • T. Shimada

Abstract

This study presents a tsunami human damage prediction method employing numerical calculation and GIS (Geographical Information System) for Usa town, Tosa City, Shikoku Island, Japan. Sometime near the end of the first half of the twenty-first century, a huge earthquake is predicted to occur along the Nankai trough and costal areas facing the Pacific ocean of Shikoku Island. Much damage due to the resultant tsunamis will be caused, therefore, it is necessary to predict the extent of human damage for every town in high-risk areas. The number of tsunami victims was estimated by population in areas of maximum inundation. The number of deaths as a result of tsunami was estimated by a method which employed accumulated death toll of every area in terms of time and space, taking into account consideration of time necessary to begin to seek refuge after an earthquake, tsunami inundation depth on land, flow velocity and evacuation speed. As a result of this study a rapid decrease in death toll by early evacuation was shown quantitatively for the first time. Thus, with the method presented here, it is possible to estimate the extent of tsunami human damage on coastal regions, and may be useful as a tsunami human damage countermeasure. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • T. Sugimoto & H. Murakami & Y. Kozuki & K. Nishikawa & T. Shimada, 2003. "A Human Damage Prediction Method for Tsunami Disasters Incorporating Evacuation Activities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(3), pages 587-602, July.
  • Handle: RePEc:spr:nathaz:v:29:y:2003:i:3:p:587-602
    DOI: 10.1023/A:1024779724065
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1024779724065
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1024779724065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Chen & Guofang Zhai & Chongqiang Ren & Yijun Shi & Jianxin Zhang, 2018. "Urban Resources Selection and Allocation for Emergency Shelters: In a Multi-Hazard Environment," IJERPH, MDPI, vol. 15(6), pages 1-17, June.
    2. Mehrshad Amini & Dylan R. Sanderson & Daniel T. Cox & Andre R. Barbosa & Nathanael Rosenheim, 2024. "Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9187-9222, August.
    3. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    4. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    5. Jonkman, S.N. & Lentz, A. & Vrijling, J.K., 2010. "A general approach for the estimation of loss of life due to natural and technological disasters," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1123-1133.
    6. Yates, Athol, 2014. "A framework for studying mortality arising from critical infrastructure loss," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(2), pages 100-111.
    7. Hisao Nakai & Tomoya Itatani & Seiji Kaganoi & Aya Okamura & Ryo Horiike & Masao Yamasaki, 2021. "Needs of Children with Neurodevelopmental Disorders and Geographic Location of Emergency Shelters Suitable for Vulnerable People during a Tsunami," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    8. S. Jonkman & J. Vrijling & A. Vrouwenvelder, 2008. "Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 353-389, September.
    9. Jorge León & Alonso Ogueda & Alejandra Gubler & Patricio Catalán & Matías Correa & Javiera Castañeda & Gianni Beninati, 2024. "Increasing resilience to catastrophic near-field tsunamis: systems for capturing, modelling, and assessing vertical evacuation practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9135-9161, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:29:y:2003:i:3:p:587-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.