IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10232-d634813.html
   My bibliography  Save this article

Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process for Flood-Hazard Assessment in the Megalo Rema River Catchment (East Attica, Greece)

Author

Listed:
  • Efthimios Karymbalis

    (Department of Geography, Harokopio University, GR-17671 Athens, Greece)

  • Maria Andreou

    (Department of Geography, Harokopio University, GR-17671 Athens, Greece)

  • Dimitrios-Vasileios Batzakis

    (Department of Geography, Harokopio University, GR-17671 Athens, Greece)

  • Konstantinos Tsanakas

    (Department of Geography, Harokopio University, GR-17671 Athens, Greece)

  • Sotirios Karalis

    (Department of Surveying and Geoinformatics Engineering, School of Engineering, University of West Attica, GR-12243 Athens, Greece)

Abstract

This study deals with the flood-hazard assessment and mapping in the catchment of Megalo Rema (East Attica, Greece). Flood-hazard zones were identified utilizing Multi-Criteria Decision Analysis (MCDA) integrated with Geographic Information System (GIS). Five factors were considered as the most influential parameters for the water course when high storm-water runoff exceeds drainage system capacity and were taken into account. These factors include slope, elevation, distance from stream channels, geological formations in terms of their hydro-lithological behavior and land cover. To obtain the final weights for each factor, rules of the Analytic Hierarchy Process (AHP) were applied. The final flood-hazard assessment and mapping of the study area were produced through Weighted Linear Combination (WLC) procedures. The final map showed that approximately 26.3 km 2 , which corresponds to 22.7% of the total area of the catchment, belongs to the high flood risk zone, while approximately 25 km 2 , corresponding to ~15% of the catchment, is of very high flood risk. The highly and very highly prone to flooding areas are located mostly at the southern and western parts of the catchment. Furthermore, the areas on both sides of the channel along the lower reaches of the main stream are of high and very high risk. The highly and very highly prone to flooding areas are relatively low-lying, gently sloping and extensively urbanized, and host the densely populated settlements of Rafina-Pikermi, Penteli, Pallini, Peania, Spata, Glika Nera, Gerakas and Anthousa. The accuracy of the flood-hazard map was verified by correlating flood events of the last 30 years, the Hydrologic Engineering Center’s River Analysis System (HEC–RAS) simulation and quantitative geomorphological analysis with the flood-hazard level. The results of our approach provide decision makers with important information for land-use planning at a regional scale, determining safe and unsafe areas for urban development.

Suggested Citation

  • Efthimios Karymbalis & Maria Andreou & Dimitrios-Vasileios Batzakis & Konstantinos Tsanakas & Sotirios Karalis, 2021. "Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process for Flood-Hazard Assessment in the Megalo Rema River Catchment (East Attica, Greece)," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10232-:d:634813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantinos Tsanakas & Kalliopi Gaki-Papanastassiou & Kleomenis Kalogeropoulos & Christos Chalkias & Petros Katsafados & Efthimios Karymbalis, 2016. "Investigation of flash flood natural causes of Xirolaki Torrent, Northern Greece based on GIS modeling and geomorphological analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1015-1033, November.
    2. G. Papaioannou & L. Vasiliades & A. Loukas, 2015. "Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 399-418, January.
    3. Hariklia D. Skilodimou & George D. Bathrellos & Dimitrios E. Alexakis, 2021. "Flood Hazard Assessment Mapping in Burned and Urban Areas," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    4. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    5. Thomas L. Saaty, 1990. "An Exposition of the AHP in Reply to the Paper "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 259-268, March.
    6. Francisco Correia & Maria Da graça saraiva & Fernando Da Silva & Isabel Ramos, 1999. "Floodplain Management in Urban Developing Areas. Part I. Urban Growth Scenarios and Land-Use Controls," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(1), pages 1-21, February.
    7. Hessel C. Winsemius & Jeroen C. J. H. Aerts & Ludovicus P. H. van Beek & Marc F. P. Bierkens & Arno Bouwman & Brenden Jongman & Jaap C. J. Kwadijk & Willem Ligtvoet & Paul L. Lucas & Detlef P. van Vuu, 2016. "Global drivers of future river flood risk," Nature Climate Change, Nature, vol. 6(4), pages 381-385, April.
    8. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    9. Francesco Dottori & Wojciech Szewczyk & Juan-Carlos Ciscar & Fang Zhao & Lorenzo Alfieri & Yukiko Hirabayashi & Alessandra Bianchi & Ignazio Mongelli & Katja Frieler & Richard A. Betts & Luc Feyen, 2018. "Increased human and economic losses from river flooding with anthropogenic warming," Nature Climate Change, Nature, vol. 8(9), pages 781-786, September.
    10. Christos Giannaros & Elissavet Galanaki & Vassiliki Kotroni & Konstantinos Lagouvardos & Christina Oikonomou & Haris Haralambous & Theodore M. Giannaros, 2021. "Pre-Operational Application of a WRF-Hydro-Based Fluvial Flood Forecasting System in the Southeast Mediterranean," Forecasting, MDPI, vol. 3(2), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Liu & Kangjie Wang & Shan Lv & Xiangtao Fan & Haixia He, 2023. "Flood Risk Assessment Based on a Cloud Model in Sichuan Province, China," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    2. Polina Lemenkova & Olivier Debeir, 2022. "Seismotectonics of Shallow-Focus Earthquakes in Venezuela with Links to Gravity Anomalies and Geologic Heterogeneity Mapped by a GMT Scripting Language," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    3. Shakti P. C. & Kohin Hirano & Koyuru Iwanami, 2023. "Developing Flood Risk Zones during an Extreme Rain Event from the Perspective of Social Insurance Management," Sustainability, MDPI, vol. 15(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadriye Burcu Yavuz Kumlu & Şule Tüdeş, 2019. "Determination of earthquake-risky areas in Yalova City Center (Marmara region, Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order pr," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 999-1018, April.
    2. M. M. Yagoub & Aishah A. Alsereidi & Elfadil A. Mohamed & Punitha Periyasamy & Reem Alameri & Salama Aldarmaki & Yaqein Alhashmi, 2020. "Newspapers as a validation proxy for GIS modeling in Fujairah, United Arab Emirates: identifying flood-prone areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 111-141, October.
    3. Hariklia D. Skilodimou & George D. Bathrellos & Dimitrios E. Alexakis, 2021. "Flood Hazard Assessment Mapping in Burned and Urban Areas," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    4. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    5. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    6. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    8. Pranay Paul & Rumki Sarkar, 2022. "Flood susceptible surface detection using geospatial multi-criteria framework for management practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3015-3041, December.
    9. Hao Chen & Zongxue Xu & Yang Liu & Yixuan Huang & Fang Yang, 2022. "Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    10. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    11. Lin Lin & Zening Wu & Qiuhua Liang, 2019. "Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 455-475, June.
    12. Mahmoud M. Abd-el-Kader & Ahmed M. El-Feky & Mohamed Saber & Maged M. AlHarbi & Abed Alataway & Faisal M. Alfaisal, 2023. "Designating Appropriate Areas for Flood Mitigation and Rainwater Harvesting in Arid Region Using a GIS-based Multi-criteria Decision Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1083-1108, February.
    13. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    14. Ziyue Zeng & Guoqiang Tang & Di Long & Chao Zeng & Meihong Ma & Yang Hong & Hui Xu & Jing Xu, 2016. "A cascading flash flood guidance system: development and application in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2071-2093, December.
    15. Ireneusz Laks & Zbigniew Walczak, 2020. "Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland)," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    16. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    17. Kerim Koc & Zeynep Işık, 2020. "A multi-agent-based model for sustainable governance of urban flood risk mitigation measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1079-1110, October.
    18. Vicente Rodríguez Montequín & Joaquín Manuel Villanueva Balsera & Marina Díaz Piloñeta & César Álvarez Pérez, 2020. "A Bradley-Terry Model-Based Approach to Prioritize the Balance Scorecard Driving Factors: The Case Study of a Financial Software Factory," Mathematics, MDPI, vol. 8(2), pages 1-15, February.
    19. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    20. Beser Oktay Vehbi & Kağan Günçe & Aminreza Iranmanesh, 2021. "Multi-Criteria Assessment for Defining Compatible New Use: Old Administrative Hospital, Kyrenia, Cyprus," Sustainability, MDPI, vol. 13(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10232-:d:634813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.