IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i7d10.1007_s10668-023-03385-9.html
   My bibliography  Save this article

A grey fuzzy analytic hierarchy process-based flash flood vulnerability assessment in an ungauged Himalayan watershed

Author

Listed:
  • Dibyandu Roy

    (Indian Institute of Technology, Kharagpur)

  • Anirban Dhar

    (Indian Institute of Technology, Kharagpur)

  • Venkappayya R. Desai

    (Indian Institute of Technology, Kharagpur)

Abstract

Flash flood is the most recurrent natural threat in northeastern India, especially during the peak of the monsoon season. In recent decades, the frequency of flash floods has considerably increased in the Himalayan watersheds, causing enormous human suffering, infrastructure damage, ecosystem disruption, and economic losses. Considering the exponential rise in the frequency of flash flood events, identifying the Flash Flood Vulnerable Zones (FFVZs) is one of the most crucial findings to limit their negative consequences. In this study, grey fuzzy analytic hierarchy process-based model integrated with the geographic information system is implemented to assess the flash flood vulnerability in the Ranikhola watershed, East Sikkim, India. Additionally, a novel Flash Flood Vulnerability Index (FFVI) is proposed to determine the flash flood vulnerability that takes into account twelve natural and anthropogenic parameters. Further, the FFVI map is classified into three FFVZs: low, moderate, and high. The effectiveness of the methodology implemented is judged by the high EV value (6.4286) and the comparison parameter. The harshest conclusion of this analysis, the major cities, such as Gangtok, Ranipool, and Singtam, are designated high FFVZ. The sensitivity analysis results show the LULC has the maximum positive influence on high FFVZ.

Suggested Citation

  • Dibyandu Roy & Anirban Dhar & Venkappayya R. Desai, 2024. "A grey fuzzy analytic hierarchy process-based flash flood vulnerability assessment in an ungauged Himalayan watershed," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18181-18206, July.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03385-9
    DOI: 10.1007/s10668-023-03385-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03385-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03385-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nathan S. Debortoli & Pedro Ivo M. Camarinha & José A. Marengo & Regina R. Rodrigues, 2017. "An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 557-582, March.
    2. Chowdhury, Md. Maruf Hossan & Quaddus, Mohammed A., 2016. "A multi-phased QFD based optimization approach to sustainable service design," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 165-178.
    3. Reshma T. Vilasan & Vijay S. Kapse, 2022. "Evaluation of the prediction capability of AHP and F-AHP methods in flood susceptibility mapping of Ernakulam district (India)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1767-1793, June.
    4. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    5. Yves Hategekimana & Lijun Yu & Yueping Nie & Jianfeng Zhu & Fang Liu & Fei Guo, 2018. "Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1137-1153, June.
    6. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon, 2023. "Fuzzy Analytical Hierarchy Process for Strategic Decision Making in Electric Vehicle Adoption," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    2. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    3. Ezgi Güler & Süheyla Yerel Kandemir, 2024. "Analysis of PM 10 Substances via Intuitionistic Fuzzy Decision-Making and Statistical Evaluation," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    4. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    5. Nicola Bellantuono & Pierpaolo Pontrandolfo & Barbara Scozzi, 2016. "Capturing the Stakeholders’ View in Sustainability Reporting: A Novel Approach," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    6. Vicente Rodríguez Montequín & Joaquín Manuel Villanueva Balsera & Marina Díaz Piloñeta & César Álvarez Pérez, 2020. "A Bradley-Terry Model-Based Approach to Prioritize the Balance Scorecard Driving Factors: The Case Study of a Financial Software Factory," Mathematics, MDPI, vol. 8(2), pages 1-15, February.
    7. Badreya Gharib Khamis Mohammed Alblooshi & Syed Zamberi Ahmad & Matloub Hussain & Sanjay Kumar Singh, 2022. "Sustainable management of electronic waste: Empirical evidences from a stakeholders' perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1856-1874, May.
    8. Wendong Jiang, 2024. "Key Selection Factors Influencing Animation Films from the Perspective of the Audience," Mathematics, MDPI, vol. 12(10), pages 1-21, May.
    9. Muhammad Mohsin & Yin Hengbin & Zhang Luyao & Li Rui & Qian Chong & Ana Mehak, 2022. "An Application of Multiple-Criteria Decision Analysis for Risk Prioritization and Management: A Case Study of the Fisheries Sector in Pakistan," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    10. Nyimbili, Penjani Hopkins & Erden, Turan, 2020. "GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    11. Van Thac Dang & Jianming Wang & Wilson Van-Thac Dang, 2019. "An Integrated Fuzzy AHP and Fuzzy TOPSIS Approach to Assess Sustainable Urban Development in an Emerging Economy," IJERPH, MDPI, vol. 16(16), pages 1-20, August.
    12. Daniel Jugend & Hugo Henrique dos Santos & Susana Garrido & Regiane Máximo Siqueira & Jaime A. Mesa, 2024. "Circular product design challenges: An exploratory study on critical barriers," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4825-4842, July.
    13. Sumanta Das & Abhiram Yadav Myla & Akhilesh Barve & Anil Kumar & Naresh Chandra Sahu & Kamalakanta Muduli & Sunil Luthra, 2023. "A systematic assessment of multi‐dimensional risk factors for sustainable development in food grain supply chains: A business strategic prospective analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5536-5562, December.
    14. Yiqing Sun & Zhenzhong Shen & Weihua Fang & Jiaao Yu & Lei Gan & Liqun Xu & Runying Wang & Hongwei Zhang & Ruiwen Liu & Congcong Zhou & Zhangxin Huang, 2024. "Evaluation of ecologically clean small watersheds in the Yangtze river estuary area of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26147-26170, October.
    15. Amir Hossein Salimi & Amir Noori & Hossein Bonakdari & Jafar Masoompour Samakosh & Ehsan Sharifi & Mohammadreza Hassanvand & Baharam Gharabaghi & Mehdi Agharazi, 2020. "Exploring the Role of Advertising Types on Improving the Water Consumption Behavior: An Application of Integrated Fuzzy AHP and Fuzzy VIKOR Method," Sustainability, MDPI, vol. 12(3), pages 1-33, February.
    16. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    17. Weimin Ye & Cen Gao & Zhangrong Liu & Qiong Wang & Wei Su, 2023. "A Fuzzy-AHP-based variable weight safety evaluation model for expansive soil slope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 559-581, October.
    18. Rofiat Bunmi Mudashiru & Nuridah Sabtu & Rozi Abdullah & Azlan Saleh & Ismail Abustan, 2022. "A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1903-1939, July.
    19. Kaixuan Liu & Jiayu Zhao & Chun Zhu, 2022. "Research on Digital Restoration of Plain Unlined Silk Gauze Gown of Mawangdui Han Dynasty Tomb Based on AHP and Human–Computer Interaction Technology," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    20. Kaya, İhsan, 2012. "Evaluation of outsourcing alternatives under fuzzy environment for waste management," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 107-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03385-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.