IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i9p1409-1416.html
   My bibliography  Save this article

A fuzzy multicriteria benefit-cost approach for irrigation projects evaluation

Author

Listed:
  • Anagnostopoulos, K.P.
  • Petalas, C.

Abstract

Three alternative irrigation projects for the East Macedonia-Thrace Region, Greece, are considered. Given the presence of valuable natural ecosystems in the area, environmental considerations are of great importance. In order to evaluate the projects, a fuzzy multicriteria benefit-cost approach is proposed. The overall goal is the rational management of water resources, and the projects appraisal is based on economic, social, and environmental criteria. Alternative scenarios on the availability of water resources are also incorporated in the decision model. The decision problem is formulated as two hierarchies, and the projects are ranked according to the benefit-cost ratio of their global priorities. The proposed method is proved to be, on the one hand, very suitable when both costs and benefits cannot be easily expressed into monetary terms as the traditional benefit-cost analysis requires; and, on the other hand, a valuable tool to cope with vague judgments.

Suggested Citation

  • Anagnostopoulos, K.P. & Petalas, C., 2011. "A fuzzy multicriteria benefit-cost approach for irrigation projects evaluation," Agricultural Water Management, Elsevier, vol. 98(9), pages 1409-1416, July.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:9:p:1409-1416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411000989
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karami, Ezatollah, 2006. "Appropriateness of farmers' adoption of irrigation methods: The application of the AHP model," Agricultural Systems, Elsevier, vol. 87(1), pages 101-119, January.
    2. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, December.
    3. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    4. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    5. Raju, K. S & Kumar, D. N, 1999. "Multicriterion decision making in irrigation planning," Agricultural Systems, Elsevier, vol. 62(2), pages 117-129, November.
    6. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    7. Ko, Seok-Ku & Fontane, Darrell G. & Margeta, Jure, 1994. "Multiple reservoir system operational planning using multi-criterion decision analysis," European Journal of Operational Research, Elsevier, vol. 76(3), pages 428-439, August.
    8. Tiwari, D. N. & Loof, R. & Paudyal, G. N., 1999. "Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques," Agricultural Systems, Elsevier, vol. 60(2), pages 99-112, May.
    9. Abu-Taleb, Maher F. & Mareschal, Bertrand, 1995. "Water resources planning in the Middle East: Application of the PROMETHEE V multicriteria method," European Journal of Operational Research, Elsevier, vol. 81(3), pages 500-511, March.
    10. B. Srdjevic & Y. Medeiros & A. Faria, 2004. "An Objective Multi-Criteria Evaluation of Water Management Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(1), pages 35-54, February.
    11. Tufan Demirel & Nihan Çetin Demirel & Cengiz Kahraman, 2008. "Fuzzy Analytic Hierarchy Process and its Application," Springer Optimization and Its Applications, in: Cengiz Kahraman (ed.), Fuzzy Multi-Criteria Decision Making, pages 53-83, Springer.
    12. Thomas L. Saaty, 2005. "The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 345-405, Springer.
    13. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    14. Datta, K. K. & Jong, C. de, 2002. "Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India," Agricultural Water Management, Elsevier, vol. 57(3), pages 223-238, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Micky A. Babalola, 2020. "A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment Alternatives: The Case of Oita City, Japan," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    3. Wang, S. & Xie, Y.L. & Huang, G.H. & Yao, Y. & Wang, S.Y. & Li, Y.F., 2021. "A Structural Adjustment optimization model for electric-power system management under multiple Uncertainties—A case study of Urumqi city, China," Energy Policy, Elsevier, vol. 149(C).
    4. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Jia, Z. & Wu, Z. & Luo, W. & Xi, W. & Tang, S. & Liu, W.L. & Fang, S., 2013. "The impact of improving irrigation efficiency on wetland distribution in an agricultural landscape in the upper reaches of the Yellow River in China," Agricultural Water Management, Elsevier, vol. 121(C), pages 54-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    2. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    4. PrasannaVenkatesan, S. & Goh, M., 2016. "Multi-objective supplier selection and order allocation under disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 124-142.
    5. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    6. Carayannis, Elias G. & Goletsis, Yorgos & Grigoroudis, Evangelos, 2018. "Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 4-17.
    7. Caprioli, Caterina & Bottero, Marta, 2021. "Addressing complex challenges in transformations and planning: A fuzzy spatial multicriteria analysis for identifying suitable locations for urban infrastructures," Land Use Policy, Elsevier, vol. 102(C).
    8. José Ribas, 2014. "An Assessment of Conflicting Intentions in the Use of Multipurpose Water Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3989-4000, September.
    9. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    11. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    12. Ireneusz Laks & Zbigniew Walczak, 2020. "Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland)," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    13. Jelena Markovic Brankovic & Milica Markovic & Djordje Nikolic, 2018. "Comparative study of hydraulic structures alternatives using promethee II complete ranking method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3457-3471, August.
    14. Irina Vinogradova-Zinkevič, 2023. "Comparative Sensitivity Analysis of Some Fuzzy AHP Methods," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    15. Mohammad Ebrahim Banihabib & Mohammad Hadi Shabestari, 2017. "Fuzzy Hybrid MCDM Model for Ranking the Agricultural Water Demand Management Strategies in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 495-513, January.
    16. Rujee Rodcha & Nitin K. Tripathi & Rajendra Prasad Shrestha, 2019. "Comparison of Cash Crop Suitability Assessment Using Parametric, AHP, and FAHP Methods," Land, MDPI, vol. 8(5), pages 1-22, May.
    17. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    18. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.
    19. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    20. Ioannis Sitaridis & Fotis Kitsios, 2020. "Competitiveness analysis and evaluation of entrepreneurial ecosystems: a multi-criteria approach," Annals of Operations Research, Springer, vol. 294(1), pages 377-399, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:9:p:1409-1416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.