IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v28y2003i1p65-84.html
   My bibliography  Save this article

Geomorphic Effects of Monsoon Floods on Indian Rivers

Author

Listed:
  • Vishwas Kale

Abstract

The southwest summer monsoon contributesthe bulk of India's rainfall. Consequently,almost all the geomorphic work by the rivers is carried out during the monsoonseason in general and the monsoon floods in particular. Indian rivers arecharacterized by high average flood discharges and large temporal variability. Thereis also significant spatial variation in the magnitude, frequency and power of floods, on account of regional variations in monsoon rainfall, basin characteristics andchannel geometry. As a result, the channel responses and the geomorphic effects also varyspatially. This paper describes the hydrological and geomorphological aspects, as well asthe geomorphic effects of monsoon floods in the Indian rivers. The geomorphic effects of floods are most impressive only in certainareas – the Himalaya, the Thar Desert, and the Indus-Ganga-Brahmaputra Plains. There are numerous instances of flood-induced changes in the channel dimension,position and pattern in these areas. In the Ganga-Brahmaputra Plains, the annualfloods appear to be geomorphologically more effective than the occasional large floods.In comparison, the rivers of the Indian Peninsula are, by and large, stable and thegeomorphic effects of floods are modest. Only large-magnitude floods that occur at aninterval of several years to decades are competent to modify the channel morphology in asignificant way. A synthesis of the various case studies available from the Indianregion indicates that often the absolute magnitude of a flood is not as important withrespect to the geomorphic effects as the flow stress and competence. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Vishwas Kale, 2003. "Geomorphic Effects of Monsoon Floods on Indian Rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 65-84, January.
  • Handle: RePEc:spr:nathaz:v:28:y:2003:i:1:p:65-84
    DOI: 10.1023/A:1021121815395
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1021121815395
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1021121815395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajesh Kumar & Prasenjit Acharya, 2016. "Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 437-464, October.
    2. Arvind Chandra Pandey & Kavita Kaushik & Bikash Ranjan Parida, 2022. "Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin," Sustainability, MDPI, vol. 14(7), pages 1-22, April.
    3. Sandipan Ghosh & Sanat Guchhait, 2014. "Hydrogeomorphic variability due to dam constructions and emerging problems: a case study of Damodar River, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 769-796, June.
    4. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    5. Sadhan Malik & Subodh Chandra Pal & Alireza Arabameri & Indrajit Chowdhuri & Asish Saha & Rabin Chakrabortty & Paramita Roy & Biswajit Das, 2021. "GIS-based statistical model for the prediction of flood hazard susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16713-16743, November.
    6. Preet Lal & Aniket Prakash & Amit Kumar, 2020. "Google Earth Engine for concurrent flood monitoring in the lower basin of Indo-Gangetic-Brahmaputra plains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1947-1952, November.
    7. Sumit Das & Gianvito Scaringi, 2021. "River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2439-2459, December.
    8. Aznarul Islam & Biplab Sarkar & Ujwal Deep Saha & Mainul Islam & Susmita Ghosh, 2022. "Can an annual flood induce changes in channel geomorphology?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 1019-1046, March.
    9. Pranay Paul & Rumki Sarkar, 2022. "Flood susceptible surface detection using geospatial multi-criteria framework for management practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3015-3041, December.
    10. Salman Atif & Muhammad Umar & Fahim Ullah, 2021. "Investigating the flood damages in Lower Indus Basin since 2000: Spatiotemporal analyses of the major flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2357-2383, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:28:y:2003:i:1:p:65-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.