IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p4968-d373121.html
   My bibliography  Save this article

Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan

Author

Listed:
  • Moldir Rakhimova

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Science, Beijing 100049, China)

  • Tie Liu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Science, Beijing 100049, China)

  • Sanim Bissenbayeva

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Science, Beijing 100049, China)

  • Yerbolat Mukanov

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Science, Beijing 100049, China
    Regional State Enterprise Kazhydromet, Nur-Sultan 010000, Kazakhstan)

  • Khusen Sh. Gafforov

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Science, Beijing 100049, China)

  • Zhuldyzay Bekpergenova

    (Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Science, Beijing 100049, China
    Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 83011, China)

  • Aminjon Gulakhmadov

    (Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    Ministry of Energy and Water Resources of the Republic of Tajikistan, Dushanbe 734064, Tajikistan)

Abstract

The variations of climate and water resources in the Buqtyrma River Basin (BRB), which is located at the cross-section of the Altai Mountains, Eurasian Steppe and Tian Shan Mountains, have a great significance for agriculture and ecosystems in the region. Changing climatic conditions will change the hydrological cycle in the whole basin. In this study, we examined the historical trends and change points of the climate and hydrological variables, the contributions of climate change and human activities to runoff changes, and the relative changes in the runoff to the precipitation and potential evapotranspiration from 1950 to 2015 by using the Mann–Kendall trend test, Pettitt test, double cumulative curve and elasticities methods. In addition, a multi-model ensemble (MME) of the six general circulation models (GCMs) for two future periods (2036–2065 and 2071–2100) was assessed to estimate the spatio-temporal variations in precipitation and temperature under two representative concentration pathways (RCPs 4.5 and 8.5) scenarios. Our study detected that the runoff change-point occurred in 1982. The impacts induced by climate change on runoff change were as follows—70% in the upstream, 62.11% in the midstream and 15.34% in the downstream area. The impacts of human activity on runoff change were greater in the downstream area (84.66%) than in the upstream and midstream areas. A continuously increasing trend was indicated regarding average annual temperature under RCP 4.5 (from 0.37 to 0.33 °C/decade) and under RCP 8.5 (from 0.50 to 0.61 °C/decade) during two future periods. Additionally, an increasing trend in predicted precipitation was exhibited under RCP 4.5 (13.6% and 19.9%) and under RCP 8.5 (10.5% and 18.1%) during both future periods. The results of the relative runoff changes to the predicted precipitation and potential evapotranspiration were expected to increase during two future time periods under RCP 4.5 (18.53% and 25.40%) and under RCP 8.5 (8.91% and 13.38%) relative to the base period. The present work can provide a reference for the utilization and management of regional water resources and for ecological environment protection.

Suggested Citation

  • Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4968-:d:373121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/4968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/4968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Huang & Ziqiang Xia & Fan Li & Lidan Guo & Fucheng Yang, 2012. "Hydrological Changes of the Irtysh River and the Possible Causes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3195-3208, September.
    2. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    3. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nekruz Gulahmadov & Yaning Chen & Aminjon Gulakhmadov & Moldir Rakhimova & Manuchekhr Gulakhmadov, 2021. "Quantifying the Relative Contribution of Climate Change and Anthropogenic Activities on Runoff Variations in the Central Part of Tajikistan in Central Asia," Land, MDPI, vol. 10(5), pages 1-29, May.
    2. Yufei Jiao & Jia Liu & Chuanzhe Li & Wei Wang & Fuliang Yu & Yizhi Wang, 2020. "Quantitative Attribution of Runoff Attenuation to Climate Change and Human Activity in Typical Mountainous Areas: An Enlightenment to Water Resource Sustainable Utilization and Management in North Chi," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    3. Qinghe Zhao & Shengyan Ding & Xiaoyu Ji & Zhendong Hong & Mengwen Lu & Peng Wang, 2021. "Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River," Land, MDPI, vol. 10(5), pages 1-21, May.
    4. Altanshagai Batmunkh & Agus Dwi Nugroho & Maria Fekete-Farkas & Zoltan Lakner, 2022. "Global Challenges and Responses: Agriculture, Economic Globalization, and Environmental Sustainability in Central Asia," Sustainability, MDPI, vol. 14(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsin-Yu Chen & Chia-Chi Huang & Hsin-Fu Yeh, 2021. "Quantifying the Relative Contribution of the Climate Change and Human Activity on Runoff in the Choshui River Alluvial Fan, Taiwan," Land, MDPI, vol. 10(8), pages 1-14, August.
    2. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    3. Nekruz Gulahmadov & Yaning Chen & Aminjon Gulakhmadov & Moldir Rakhimova & Manuchekhr Gulakhmadov, 2021. "Quantifying the Relative Contribution of Climate Change and Anthropogenic Activities on Runoff Variations in the Central Part of Tajikistan in Central Asia," Land, MDPI, vol. 10(5), pages 1-29, May.
    4. Sanim Bissenbayeva & Jilili Abuduwaili & Dana Shokparova & Asel Saparova, 2019. "Variation in Runoff of the Arys River and Keles River Watersheds (Kazakhstan), as Influenced by Climate Variation and Human Activity," Sustainability, MDPI, vol. 11(17), pages 1-14, September.
    5. Jiantao Yang & Hongbo Zhang & Chongfeng Ren & Zhengnian Nan & Xiaowei Wei & Ci Li, 2019. "A Cross-Reconstruction Method for Step-Changed Runoff Series to Implement Frequency Analysis under Changing Environment," IJERPH, MDPI, vol. 16(22), pages 1-20, November.
    6. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    7. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    9. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    10. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    11. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    12. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    13. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    14. Hsin-Yu Chen & Yu-Hsiang Hsu & Chia-Chi Huang & Hsin-Fu Yeh, 2023. "Baseflow Variation in Southern Taiwan Basin," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    15. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    16. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    17. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    18. Roquia Salam & Abu Reza Md. Towfiqul Islam & Shakibul Islam, 2020. "Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4509-4535, June.
    19. Jing Xu & Ping Zhao & Johnny C. L. Chan & Mingyuan Shi & Chi Yang & Siyu Zhao & Ying Xu & Junming Chen & Ling Du & Jie Wu & Jiaxin Ye & Rui Xing & Huimei Wang & Lu Liu, 2024. "Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4968-:d:373121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.