IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i2d10.1007_s11069-022-05475-9.html
   My bibliography  Save this article

Indicator-based approach for flood vulnerability assessment in ancient heritage city of Hoi An, Central Region of Vietnam

Author

Listed:
  • Thuy Linh Nguyen

    (Tokyo Metropolitan University
    National Economics University)

  • Chisato Asahi

    (Tokyo Metropolitan University)

  • Thi An Tran

    (Thu Dau Mot University)

  • Ngoc Hanh Le

    (The University of Danang)

Abstract

The increasing unpredictable floods due to the effect of climate change across regions of Vietnam have threaten the country’s socio-economic development goals at local, regional and national scales. This paper employs indicator-based approach to calculate Flood Vulnerability Index and generates vulnerability maps that reflect the spatial distribution of flood vulnerability in the Central region of Vietnam, which is the hardest hit flood region and home to many sites of great cultural-historical value. Data were collected from Hoi An’s 2020 statistical yearbook, digital elevation model, land use map, open street map and from surveying experts and civil servants at the city level (representatives of the City People’s Committee, the Center for Cultural Heritage Management and Preservation of Hoi An) and at ward/commune level (representatives of 12 wards and communes). GIS techniques and analytical hierarchy process were applied to analysis the obtained data and generate three scenarios that reflect the impact of vulnerability’s components. The findings indicate that number of organizations in disaster prevention and historical site preservation, road density, the presence of historical sites, flood frequency and average elevation are the key factors affecting the city’s vulnerability to flood hazard in the area of cultural heritage. The empirical results in Hoi An also indicate the importance of the number of poor households as an necessary factor when considering the sensitivity to flood in developing countries. In addition, this study distinguishes the impact of vulnerability’s components by generating different scenarios which clearly proof that having more floods does not always mean high vulnerability and vice versa. More importantly, by looking into the reasons (either transportation, education or other indicators) that leads to the gap between Flood Vulnerability Index in different scenarios, the paper subsequently identifies measures for each locality, whereby the governmental investment budget can be prioritized effectively.

Suggested Citation

  • Thuy Linh Nguyen & Chisato Asahi & Thi An Tran & Ngoc Hanh Le, 2022. "Indicator-based approach for flood vulnerability assessment in ancient heritage city of Hoi An, Central Region of Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2357-2385, November.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05475-9
    DOI: 10.1007/s11069-022-05475-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05475-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05475-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. Roman Hoffmann & Daniela Blecha, 2020. "Education and Disaster Vulnerability in Southeast Asia: Evidence and Policy Implications," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    3. Krajnc, Damjan & Glavic, Peter, 2005. "How to compare companies on relevant dimensions of sustainability," Ecological Economics, Elsevier, vol. 55(4), pages 551-563, December.
    4. Sumit Das & Gianvito Scaringi, 2021. "River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2439-2459, December.
    5. Deressa, Temesgen T. & Hassan, Rashid M. & Ringler, Claudia, 2009. "Assessing household vulnerability to climate change: The case of farmers in the Nile Basin of Ethiopia," IFPRI discussion papers 935, International Food Policy Research Institute (IFPRI).
    6. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    7. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    8. Bangalore, Mook & Smith, Andrew & Veldkamp, Ted, 2018. "Exposure to floods, climate change, and poverty in Vietnam," LSE Research Online Documents on Economics 100215, London School of Economics and Political Science, LSE Library.
    9. Kylie Mason & Kirstin Lindberg & Carolin Haenfling & Allan Schori & Helene Marsters & Deborah Read & Barry Borman, 2021. "Social Vulnerability Indicators for Flooding in Aotearoa New Zealand," IJERPH, MDPI, vol. 18(8), pages 1-31, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahi, Payman & Searcy, Cory & Jaber, Mohamad Y., 2018. "A Quantitative Approach for Assessing Sustainability Performance of Corporations," Ecological Economics, Elsevier, vol. 152(C), pages 336-346.
    2. Jarosław Wątróbski & Ewa Ziemba & Artur Karczmarczyk & Jarosław Jankowski, 2018. "An Index to Measure the Sustainable Information Society: The Polish Households Case," Sustainability, MDPI, vol. 10(9), pages 1-30, September.
    3. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    4. Olivier Boiral & Marie‐Christine Brotherton & Léo Rivaud & David Talbot, 2022. "Comparing the uncomparable? An investigation of car manufacturers' climate performance," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2213-2229, July.
    5. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    6. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    7. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    8. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    9. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    10. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    11. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    12. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    13. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    14. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    15. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    16. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    17. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    18. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    19. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    20. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05475-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.