IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v100y2020i1d10.1007_s11069-019-03793-z.html
   My bibliography  Save this article

Assessment and zonation of storm surge hazards in the coastal areas of China

Author

Listed:
  • Shi Xianwu

    (Zhejiang University
    National Hazard Marine Mitigation Service)

  • Han Ziqiang

    (Shandong University)

  • Fang Jiayi

    (East China Normal University)

  • Tan Jun

    (National Hazard Marine Mitigation Service)

  • Guo Zhixing

    (National Hazard Marine Mitigation Service)

  • Sun Zhilin

    (Zhejiang University)

Abstract

Storm surge is one of the most devastating marine disasters in China, leading to tremendous economic damage and a large number of casualties. Combined storm surge hazard assessment and zonation is an important method for coastal disaster risk reduction and mitigation management. Based on observational data from tide-gauge and hydrological stations in coastal areas, we analyzed storm surge hazard intensity and generated a storm surge hazard map at the county level using the expected values of storm surge and over-warning water levels. The results show that 87, 67, 62, and 40 counties along the coast of China are exposed to the first (highest), second (higher), third (medium), and fourth (low) degree of hazard level, respectively. The areas with the highest risk of storm surge are the coasts of Bohai Bay, Laizhou Bay, and the Yangtze Delta, the coast from the north of Fuzhou to the south of Zhejiang, and the coastal area of Huizhou, Pearl River, and Yangjiang in Guangdong Province. This assessment, which is based on a national storm surge hazards map, can provide decision-making support for the government’s urban planning of coastal cities and site selection in large national projects.

Suggested Citation

  • Shi Xianwu & Han Ziqiang & Fang Jiayi & Tan Jun & Guo Zhixing & Sun Zhilin, 2020. "Assessment and zonation of storm surge hazards in the coastal areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 39-48, January.
  • Handle: RePEc:spr:nathaz:v:100:y:2020:i:1:d:10.1007_s11069-019-03793-z
    DOI: 10.1007/s11069-019-03793-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03793-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03793-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Yin & Zhane Yin & Shiyuan Xu, 2013. "Composite risk assessment of typhoon-induced disaster for China’s coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1423-1434, December.
    2. T. Wahl & I. D. Haigh & R. J. Nicholls & A. Arns & S. Dangendorf & J. Hinkel & A. B. A. Slangen, 2017. "Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    3. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    4. Christopher M. Little & Radley M. Horton & Robert E. Kopp & Michael Oppenheimer & Gabriel A. Vecchi & Gabriele Villarini, 2015. "Joint projections of US East Coast sea level and storm surge," Nature Climate Change, Nature, vol. 5(12), pages 1114-1120, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaotong Sui & Mingzhao Hu & Haoyun Wang & Lingdi Zhao, 2023. "Improved elasticity estimation model for typhoon storm surge losses in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2363-2381, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    2. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    3. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    4. Lihua Feng & Gaoyuan Luo, 2014. "Application of a nonlinear model in landfall number forecasting for tropical cyclones in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1475-1482, September.
    5. WoongHee Jung & Aikaterini P. Kyprioti & Ehsan Adeli & Alexandros A. Taflanidis, 2023. "Exploring the sensitivity of probabilistic surge estimates to forecast errors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1371-1409, January.
    6. Peter Bacopoulos, 2019. "Extreme low and high waters due to a large and powerful tropical cyclone: Hurricane Irma (2017)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 939-968, September.
    7. Sheu, Jiuh-Biing, 2024. "Mass evacuation planning for disasters management: A household evacuation route choice behavior analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    9. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison O. Campbell, 2021. "Incorporation of sea level rise in storm surge surrogate modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 531-563, January.
    10. André B. Fortunato & Edmund P. Meredith & Marta Rodrigues & Paula Freire & Hendrik Feldmann, 2019. "Near-future changes in storm surges along the Atlantic Iberian coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1003-1020, September.
    11. Kai Parker & Li Erikson & Jennifer Thomas & Kees Nederhoff & Patrick Barnard & Sanne Muis, 2023. "Relative contributions of water-level components to extreme water levels along the US Southeast Atlantic Coast from a regional-scale water-level hindcast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2219-2248, July.
    12. Lianying Yao & Jinchi Shen & Fuying Zhang & Xinbing Gu & Shuli Jiang, 2021. "Influence of Environmental Values on the Typhoon Risk Perceptions of High School Students: A Case Study in Ningbo, China," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    13. Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Wei Xie & Wen Nie & Pooya Saffari & Luis F. Robledo & Pierre-Yves Descote & Wenbin Jian, 2021. "Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 931-948, October.
    15. Yanjun Wang & Shanshan Wen & Xiucang Li & Fischer Thomas & Buda Su & Run Wang & Tong Jiang, 2016. "Spatiotemporal distributions of influential tropical cyclones and associated economic losses in China in 1984–2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2009-2030, December.
    16. Charls Antony & Sabique Langodan & Hari Prasad Dasari & Omar Knio & Ibrahim Hoteit, 2021. "Extreme water levels along the central Red Sea coast of Saudi Arabia: processes and frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1797-1814, January.
    17. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    18. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    19. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    20. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:100:y:2020:i:1:d:10.1007_s11069-019-03793-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.