IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06624-y.html
   My bibliography  Save this article

Assessing coastal flood risk under extreme events and sea level rise in the Casablanca-Mohammedia coastline (Morocco)

Author

Listed:
  • Taoufik Chtioui

    (Ibn Tofail University)

  • Mounir Hakkou

    (Scientific Institute, Mohammed V University in Rabat)

  • Abdelhaq Aangri

    (Ibn Tofail University)

  • Farah El Hassani

    (Euromed University)

  • Zakaria El Mostafa

    (Royal Naval School)

  • Aicha Benmohammadi

    (Ibn Tofail University)

Abstract

In the Casablanca-Mohammedia corridor (Morocco), flooding episodes have happened frequently over the past 20 years, damaging coastal settlements through overtopping and overflowing processes. In this context, a realistic assessment of the flood risk on this coastline is required. For this, the marine water level variations were computed by combining the involved variables (astronomical tide, storm surge, wave run-up, and sea level rise) during energetic events. They were compared with the seafront altitude to delineate the maximum spatial extent of flooded areas for the current and future (2100) time horizons. These variables were obtained through numerical and empirical modeling using topobathymetry, tide gauge, wind, and reanalysis data for wave and atmospheric pressure. Statistical methods were used to determine trends and distributions, including linear regression and the GEV model. Our approach was validated by comparing the estimated results of the total water level with the observations made in situ during previous events. Results show that flooding occurs mainly at high tides. The run-up is the largest contributor to total water level during energetic events (45–60% in structure defense areas against ~ 35% in natural areas). Currently, the floodable area for all of Casablanca-Mohammedia's coastline (109 km2) is estimated to be ~ 23.5 km2, of which ~ 13.9 km2 is urban. This area would grow by 10.87% and 20.9% by 2100, respectively. The most vulnerable zones are Mohammedia, Ain Sbâa, and Merzeg quarters, as well as Tamaris beaches. The touristic quarters of Ain Diab and the promenades on either side of the Hassan II Mosque are also vulnerable and can be dangerous for pedestrians. This study is crowned by the proposal of numerous necessary protection and adaptation measures, considering the specificities of the sections characterizing this coastline.

Suggested Citation

  • Taoufik Chtioui & Mounir Hakkou & Abdelhaq Aangri & Farah El Hassani & Zakaria El Mostafa & Aicha Benmohammadi, 2024. "Assessing coastal flood risk under extreme events and sea level rise in the Casablanca-Mohammedia coastline (Morocco)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10727-10752, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06624-y
    DOI: 10.1007/s11069-024-06624-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06624-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06624-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Kirshen & Chris Watson & Ellen Douglas & Allen Gontz & Jawon Lee & Yong Tian, 2008. "Coastal flooding in the Northeastern United States due to climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 437-451, June.
    2. Sanne Muis & Martin Verlaan & Hessel C. Winsemius & Jeroen C. J. H. Aerts & Philip J. Ward, 2016. "A global reanalysis of storm surges and extreme sea levels," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    3. T. Wahl & I. D. Haigh & R. J. Nicholls & A. Arns & S. Dangendorf & J. Hinkel & A. B. A. Slangen, 2017. "Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    4. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Martin Verlaan & Svetlana Jevrejeva & Luke P. Jackson & Luc Feyen, 2018. "Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Sanne Muis & Martin Verlaan & Hessel C. Winsemius & Jeroen C. J. H. Aerts & Philip J. Ward, 2016. "Correction: Corrigendum: A global reanalysis of storm surges and extreme sea levels," Nature Communications, Nature, vol. 7(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    2. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    3. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    4. Swen Jullien & Jérôme Aucan & Elodie Kestenare & Matthieu Lengaigne & Christophe Menkes, 2024. "Unveiling the global influence of tropical cyclones on extreme waves approaching coastal areas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Déborah Idier & Jérémy Rohmer & Rodrigo Pedreros & Sylvestre Roy & Jérome Lambert & Jessie Louisor & Gonéri Cozannet & Erwan Cornec, 2020. "Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 465-501, March.
    6. Michalis I. Vousdoukas & Joanne Clarke & Roshanka Ranasinghe & Lena Reimann & Nadia Khalaf & Trang Minh Duong & Birgitt Ouweneel & Salma Sabour & Carley E. Iles & Christopher H. Trisos & Luc Feyen & L, 2022. "African heritage sites threatened as sea-level rise accelerates," Nature Climate Change, Nature, vol. 12(3), pages 256-262, March.
    7. Jun Rentschler & Melda Salhab & Bramka Arga Jafino, 2022. "Flood exposure and poverty in 188 countries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Michalis I. Vousdoukas & Panagiotis Athanasiou & Alessio Giardino & Lorenzo Mentaschi & Alessandro Stocchino & Robert E. Kopp & Pelayo Menéndez & Michael W. Beck & Roshanka Ranasinghe & Luc Feyen, 2023. "Small Island Developing States under threat by rising seas even in a 1.5 °C warming world," Nature Sustainability, Nature, vol. 6(12), pages 1552-1564, December.
    9. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Maruyama Rentschler,Jun Erik & Salhab,Melda, 2020. "People in Harm's Way : Flood Exposure and Poverty in 189 Countries," Policy Research Working Paper Series 9447, The World Bank.
    12. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Yebao Wang & Jiaqi Liu & Xin Du & Qian Liu & Xin Liu, 2021. "Temporal-spatial characteristics of storm surges and rough seas in coastal areas of Mainland China from 2000 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1273-1285, June.
    14. Oliver E. J. Wing & William Lehman & Paul D. Bates & Christopher C. Sampson & Niall Quinn & Andrew M. Smith & Jeffrey C. Neal & Jeremy R. Porter & Carolyn Kousky, 2022. "Inequitable patterns of US flood risk in the Anthropocene," Nature Climate Change, Nature, vol. 12(2), pages 156-162, February.
    15. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    17. Cameron Do & Yuriy Kuleshov, 2023. "Tropical cyclone multi-hazard risk mapping for Queensland, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3725-3746, April.
    18. Jiayi Fang & Robert J. Nicholls & Sally Brown & Daniel Lincke & Jochen Hinkel & Athanasios T. Vafeidis & Shiqiang Du & Qing Zhao & Min Liu & Peijun Shi, 2022. "Benefits of subsidence control for coastal flooding in China," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Marcely Sondermann & Sin Chan Chou & Celia Regina de Gouveia Souza & Judith Rodrigues & Jean David Caprace, 2023. "Atmospheric patterns favourable to storm surge events on the coast of São Paulo State, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 93-111, May.
    20. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06624-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.