IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i1d10.1007_s11069-021-04862-y.html
   My bibliography  Save this article

Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China

Author

Listed:
  • Wei Xie

    (Jiangxi University of Science and Technology
    Spatial Information Technology and Big Data Mining Research Center in Southwest Petroleum University)

  • Wen Nie

    (Jiangxi University of Science and Technology
    Spatial Information Technology and Big Data Mining Research Center in Southwest Petroleum University
    Zhejiang Zhipu Engineering Technology Co., Ltd)

  • Pooya Saffari

    (Spatial Information Technology and Big Data Mining Research Center in Southwest Petroleum University)

  • Luis F. Robledo

    (Universidad Andres Bello)

  • Pierre-Yves Descote

    (Universidad Andres Bello)

  • Wenbin Jian

    (Fuzhou University)

Abstract

Landslide hazard assessment is critical for preventing and mitigating landslide disasters. The tuning of hyperparameters is of great importance to achieve better accuracy in a landslide hazard assessment model. In this study, a novel approach is proposed for landslide hazard assessment with support vector machine (SVM) as the primary model and Bayesian optimization (BO) algorithm as the parameter tuning method. This study describes 1711 historical landslide disaster points in Nanping City, and a total of 12 landslide conditioning factors including elevation, slope, aspect, curvature, lithology, soil type, soil erosion, rainfall, river, land use, highway, and railway were selected. The multicollinearity diagnosis was performed on the factors using the Spearman correlation coefficient. For model validation, 1711 landslides and 1711 non-landslides were collected as the dataset and divided into a training dataset (50 %) and a testing dataset (50 %). The performance of the model was evaluated by the confusion matrix and receiver operating characteristic (ROC) curve. The results of the confusion matrix accuracy and the area under the ROC curve showed that the BO-SVM model (89.53 %, 0.97) performed better than the SVM model (84.91 %, 0.93). In addition, the landslide hazard maps generated by the BO-SVM model had better overall results than that by the SVM model.

Suggested Citation

  • Wei Xie & Wen Nie & Pooya Saffari & Luis F. Robledo & Pierre-Yves Descote & Wenbin Jian, 2021. "Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 931-948, October.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04862-y
    DOI: 10.1007/s11069-021-04862-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04862-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04862-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Yin & Zhane Yin & Shiyuan Xu, 2013. "Composite risk assessment of typhoon-induced disaster for China’s coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1423-1434, December.
    2. Kyungjin An & Suyeon Kim & Taebyeong Chae & Daeryong Park, 2018. "Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources," Sustainability, MDPI, vol. 10(2), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Muzamil Khan & Bushra Ghaffar & Rasim Shahzad & M. Riaz Khan & Munawar Shah & Ali H. Amin & Sayed M. Eldin & Najam Abbas Naqvi & Rashid Ali, 2022. "Atmospheric Anomalies Associated with the 2021 M w 7.2 Haiti Earthquake Using Machine Learning from Multiple Satellites," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    2. Lei Yang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Belgacem Bouallegue & Muhammad Faisal Javed & Nermin M. Salem, 2022. "Comparative Analysis of the Optimized KNN, SVM, and Ensemble DT Models Using Bayesian Optimization for Predicting Pedestrian Fatalities: An Advance towards Realizing the Sustainable Safety of Pedestri," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    3. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    4. Zefang Zhang & Zhikuan Qian & Yong Wei & Xing Zhu & Linjun Wang, 2022. "Evaluation of Geological Disaster Sensitivity in Shuicheng District Based on the WOE-RF Model," Sustainability, MDPI, vol. 14(23), pages 1-11, December.
    5. Yuto Omae, 2023. "Effects of Exploration Weight and Overtuned Kernel Parameters on Gaussian Process-Based Bayesian Optimization Search Performance," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
    6. Xiaojie Geng & Shunchuan Wu & Yanjie Zhang & Junlong Sun & Haiyong Cheng & Zhongxin Zhang & Shijiang Pu, 2023. "Developing hybrid XGBoost model integrated with entropy weight and Bayesian optimization for predicting tunnel squeezing intensity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 751-771, October.
    7. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    8. Chuhan Wang & Qigen Lin & Leibin Wang & Tong Jiang & Buda Su & Yanjun Wang & Sanjit Kumar Mondal & Jinlong Huang & Ying Wang, 2022. "The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: a case study of Anhui Province in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1967-1988, July.
    9. Tingyu Zhang & Quan Fu & Chao Li & Fangfang Liu & Huanyuan Wang & Ling Han & Renata Pacheco Quevedo & Tianqing Chen & Na Lei, 2022. "Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3327-3358, December.
    10. Muhammad Bilal & Muhammad Sultan & Faizan Majeed & Muhammad Farooq & Uzair Sajjad & Sobhy M. Ibrahim & Muhammad Usman Khan & Shohreh Azizi & Muhammad Yasar Javaid & Riaz Ahmad, 2022. "Investigating Adsorption-Based Atmospheric Water Harvesting Potential for Pakistan," Sustainability, MDPI, vol. 14(19), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lihua Feng & Gaoyuan Luo, 2014. "Application of a nonlinear model in landfall number forecasting for tropical cyclones in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1475-1482, September.
    2. Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
    3. Sheu, Jiuh-Biing, 2024. "Mass evacuation planning for disasters management: A household evacuation route choice behavior analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    4. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    5. Lianying Yao & Jinchi Shen & Fuying Zhang & Xinbing Gu & Shuli Jiang, 2021. "Influence of Environmental Values on the Typhoon Risk Perceptions of High School Students: A Case Study in Ningbo, China," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    6. Yanjun Wang & Shanshan Wen & Xiucang Li & Fischer Thomas & Buda Su & Run Wang & Tong Jiang, 2016. "Spatiotemporal distributions of influential tropical cyclones and associated economic losses in China in 1984–2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2009-2030, December.
    7. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    8. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    9. Xiao-Chen Yuan & Bao-Jun Tang & Yi-Ming Wei & Xiao-Jie Liang & Hao Yu & Ju-Liang Jin, 2015. "China’s regional drought risk under climate change: a two-stage process assessment approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 667-684, March.
    10. Jiangping Gao & Xiangyang Shi & Linghui Li & Ziqiang Zhou & Junfeng Wang, 2022. "Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
    11. Xiao Fengjin & Liu Qiufeng, 2023. "An evaluation of vegetation loss due to the super typhoon Sarika in Hainan Island of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1677-1695, January.
    12. Adam Pártl & David Vačkář & Blanka Loučková & Eliška Krkoška Lorencová, 2017. "A spatial analysis of integrated risk: vulnerability of ecosystem services provisioning to different hazards in the Czech Republic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1185-1204, December.
    13. Chengcheng Wan & Yafei Yan & Liucheng Shen & Jianli Liu & Xiaoxia Lai & Wei Qian & Juan Nie & Jiahong Wen, 2023. "Damage analysis of retired typhoons in mainland China from 2009 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3225-3242, April.
    14. Bipin Peethambaran & R. Anbalagan & K. V. Shihabudheen, 2019. "Landslide susceptibility mapping in and around Mussoorie Township using fuzzy set procedure, MamLand and improved fuzzy expert system-A comparative study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 121-147, March.
    15. Shi Xianwu & Han Ziqiang & Fang Jiayi & Tan Jun & Guo Zhixing & Sun Zhilin, 2020. "Assessment and zonation of storm surge hazards in the coastal areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 39-48, January.
    16. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    17. Zhaohui Zhang & Xuliang Zhang & Zongjun Xu & Haiyan Yao & Ge Li & Xiujun Liu, 2015. "Emergency countermeasures against marine disasters in Qingdao City on the basis of scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 233-255, February.
    18. Xiaorong He, 2018. "Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1153-1175, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04862-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.