IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i2p604-610.html
   My bibliography  Save this article

Objective comparisons of the optimal portfolios corresponding to different utility functions

Author

Listed:
  • Yu, Bosco Wing-Tong
  • Pang, Wan Kai
  • Troutt, Marvin D.
  • Hou, Shui Hung

Abstract

This paper considers the effects of some frequently used utility functions in portfolio selection by comparing the optimal investment outcomes corresponding to these utility functions. Assets are assumed to form a complete market of the Black-Scholes type. Under consideration are four frequently used utility functions: the power, logarithm, exponential and quadratic utility functions. To make objective comparisons, the optimal terminal wealths are derived by integration representation. The optimal strategies which yield optimal values are obtained by the integration representation of a Brownian martingale. The explicit strategy for the quadratic utility function is new. The strategies for other utility functions such as the power and the logarithm utility functions obtained this way coincide with known results obtained from Merton's dynamic programming approach.

Suggested Citation

  • Yu, Bosco Wing-Tong & Pang, Wan Kai & Troutt, Marvin D. & Hou, Shui Hung, 2009. "Objective comparisons of the optimal portfolios corresponding to different utility functions," European Journal of Operational Research, Elsevier, vol. 199(2), pages 604-610, December.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:2:p:604-610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)01034-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    2. Xiaoqiang Cai & Kok-Lay Teo & Xiaoqi Yang & Xun Yu Zhou, 2000. "Portfolio Optimization Under a Minimax Rule," Management Science, INFORMS, vol. 46(7), pages 957-972, July.
    3. Balbás, Alejandro & Balbás, Raquel & Mayoral, Silvia, 2009. "Portfolio choice and optimal hedging with general risk functions: A simplex-like algorithm," European Journal of Operational Research, Elsevier, vol. 192(2), pages 603-620, January.
    4. Andrew J. Morton & Stanley R. Pliska, 1995. "Optimal Portfolio Management With Fixed Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 337-356, October.
    5. Ballestero, E. & Gunther, M. & Pla-Santamaria, D. & Stummer, C., 2007. "Portfolio selection under strict uncertainty: A multi-criteria methodology and its application to the Frankfurt and Vienna Stock Exchanges," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1476-1487, September.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    8. Buckley, Ian & Saunders, David & Seco, Luis, 2008. "Portfolio optimization when asset returns have the Gaussian mixture distribution," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1434-1461, March.
    9. Zhao, Yonggan, 2007. "A dynamic model of active portfolio management with benchmark orientation," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3336-3356, November.
    10. Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
    11. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    12. Rambaud, Salvador Cruz & Pérez, José García & Sánchez Granero, Miguel Ángel & Trinidad Segovia, Juan Evangelista, 2009. "Markowitz's model with Euclidean vector spaces," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1245-1248, August.
    13. Nepal, Bimal & Lassan, Gregg & Drow, Baba & Chelst, Kenneth, 2009. "A set-covering model for optimizing selection of portfolio of microcontrollers in an automotive supplier company," European Journal of Operational Research, Elsevier, vol. 193(1), pages 272-281, February.
    14. Shen, Ruijun & Zhang, Shuzhong, 2008. "Robust portfolio selection based on a multi-stage scenario tree," European Journal of Operational Research, Elsevier, vol. 191(3), pages 864-887, December.
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    17. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    18. de Palma, André & Prigent, Jean-Luc, 2008. "Utilitarianism and fairness in portfolio positioning," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1648-1660, August.
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2008. "Mean-variance portfolio and contribution selection in stochastic pension funding," European Journal of Operational Research, Elsevier, vol. 187(1), pages 120-137, May.
    21. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    22. Paris, Francesco M., 2005. "Selecting an optimal portfolio of consumer loans by applying the state preference approach," European Journal of Operational Research, Elsevier, vol. 163(1), pages 230-241, May.
    23. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    24. Charles D. Feinstein & Mukund N. Thapa, 1993. "Notes: A Reformulation of a Mean-Absolute Deviation Portfolio Optimization Model," Management Science, INFORMS, vol. 39(12), pages 1552-1553, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    2. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    3. Ni, Jian & Chu, Lap Keung & Wu, Feng & Sculli, Domenic & Shi, Yuan, 2012. "A multi-stage financial hedging approach for the procurement of manufacturing materials," European Journal of Operational Research, Elsevier, vol. 221(2), pages 424-431.
    4. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2018. "A Stein-type shrinkage estimator of the covariance matrix for portfolio selections," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 931-952, November.
    5. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    6. Gatzert, Nadine & Martin, Alexander & Schmidt, Martin & Seith, Benjamin & Vogl, Nikolai, 2021. "Portfolio optimization with irreversible long-term investments in renewable energy under policy risk: A mixed-integer multistage stochastic model and a moving-horizon approach," European Journal of Operational Research, Elsevier, vol. 290(2), pages 734-748.
    7. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    8. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    2. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    3. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    4. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    5. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    6. Nguyen, Pascal & Portait, Roland, 2002. "Dynamic asset allocation with mean variance preferences and a solvency constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 26(1), pages 11-32, January.
    7. Zhao, Hui & Rong, Ximin, 2012. "Portfolio selection problem with multiple risky assets under the constant elasticity of variance model," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 179-190.
    8. Lioui, Abraham & Poncet, Patrice, 2013. "Optimal benchmarking for active portfolio managers," European Journal of Operational Research, Elsevier, vol. 226(2), pages 268-276.
    9. Anatoliy Swishchuk, 2021. "Merton Investment Problems in Finance and Insurance for the Hawkes-Based Models," Risks, MDPI, vol. 9(6), pages 1-13, June.
    10. Ye, Jun & Li, Tiantian, 2012. "The optimal mean–variance investment strategy under value-at-risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 344-351.
    11. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    14. Boyle, Phelim & Tian, Weidong, 2008. "The design of equity-indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 303-315, December.
    15. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    16. repec:dau:papers:123456789/5374 is not listed on IDEAS
    17. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    18. Eckhard Platen, 2005. "On The Role Of The Growth Optimal Portfolio In Finance," Australian Economic Papers, Wiley Blackwell, vol. 44(4), pages 365-388, December.
    19. Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.
    20. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    21. Alev Meral, 2019. "Comparison of various risk measures for an optimal portfolio," Papers 1912.09573, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:2:p:604-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.