IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v77y2014i6p753-769.html
   My bibliography  Save this article

Optimal and robust designs for trigonometric regression models

Author

Listed:
  • Xiaojian Xu
  • Xiaoli Shang

Abstract

This article presents discussions on the optimal and robust designs for trigonometric regression models under different optimality criteria. First, we investigate the classical Q-optimal designs for estimating the response function in a full trigonometric regression model with a given order. The equivalencies of Q-, A-, and G-optimal designs for trigonometric regression in general are also articulated. Second, we study minimax designs and their implementation in the case of trigonometric approximation under Q-, A-, and D-optimality. Then, We indicate the existence of the symmetric designs that are D-optimal minimax designs for general trigonometric regression models, and prove the existence of the symmetric designs that are Q- or A-optimal minimax designs for two particular trigonometric regression models under certain conditions. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Xiaojian Xu & Xiaoli Shang, 2014. "Optimal and robust designs for trigonometric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 753-769, August.
  • Handle: RePEc:spr:metrik:v:77:y:2014:i:6:p:753-769
    DOI: 10.1007/s00184-013-0463-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-013-0463-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-013-0463-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Dette & Viatcheslav Melas & Andrey Pepelyshev, 2002. "D-Optimal Designs for Trigonometric Regression Models on a Partial Circle," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 945-959, December.
    2. Holger Dette & Viatcheslav Melas & Piter Shpilev, 2007. "Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 655-673, December.
    3. Stefanie Biedermann & Holger Dette & Philipp Hoffmann, 2009. "Constrained optimal discrimination designs for Fourier regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 143-157, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
    2. Xiaojian Xu & Xiaoli Shang, 2017. "D-optimal designs for full and reduced Fourier regression models," Statistical Papers, Springer, vol. 58(3), pages 811-829, September.
    3. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    2. Xiaojian Xu & Xiaoli Shang, 2017. "D-optimal designs for full and reduced Fourier regression models," Statistical Papers, Springer, vol. 58(3), pages 811-829, September.
    3. Alqallaf, Fatemah & Huda, S., 2013. "Minimax designs for the difference between two estimated responses in a trigonometric regression model," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 909-915.
    4. Yue, Rong-Xian & Liu, Xin, 2010. "-optimal designs for a hierarchically ordered system of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3458-3465, December.
    5. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    6. Holger Dette & Viatcheslav Melas & Piter Shpilev, 2007. "Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 655-673, December.
    7. Dette, Holger & Melas, Viatcheslav B. & Shpilev, Petr, 2017. "T-optimal discriminating designs for Fourier regression models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 196-206.
    8. Dette, Holger & Melas, Viatcheslav B., 2008. "Optimal designs for estimating pairs of coefficients in Fourier regression models," Technical Reports 2008,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Fu-Chuen Chang & Lorens Imhof & Yi-Ying Sun, 2013. "Exact $$D$$ -optimal designs for first-order trigonometric regression models on a partial circle," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 857-872, August.
    10. Min-Hsiao Tsai, 2012. "Efficient discriminating design for a class of nested polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 809-817, August.
    11. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    12. Zongzhi Yue & Xiaoqing Zhang & P. van den Driessche & Julie Zhou, 2023. "Constructing K-optimal designs for regression models," Statistical Papers, Springer, vol. 64(1), pages 205-226, February.
    13. Stefanie Biedermann & Holger Dette & Philipp Hoffmann, 2009. "Constrained optimal discrimination designs for Fourier regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 143-157, March.
    14. Ghosh, Subir & Dutta, Santanu, 2013. "Robustness of designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 193-203.
    15. Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
    16. Nasir, Ehab A. & Pan, Rong, 2015. "Simulation-based Bayesian optimal ALT designs for model discrimination," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 1-9.
    17. Fu-Chuen Chang, 2005. "D-Optimal designs for weighted polynomial regression—A functional approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 833-844, December.
    18. Bretz, Frank & Dette, Holger & Pinheiro, José, 2008. "Practical considerations for optimal designs in clinical dose finding studies," Technical Reports 2008,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:77:y:2014:i:6:p:753-769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.