IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp196-206.html
   My bibliography  Save this article

T-optimal discriminating designs for Fourier regression models

Author

Listed:
  • Dette, Holger
  • Melas, Viatcheslav B.
  • Shpilev, Petr

Abstract

The problem of constructing T-optimal discriminating designs for Fourier regression models is considered. Explicit solutions of the optimal design problem for discriminating between two Fourier regression models, which differ by at most three trigonometric functions, are provided. In general, the T-optimal discriminating design depends in a complicated way on the parameters of the larger model, and for special configurations of the parameters T-optimal discriminating designs can be found analytically. Moreover, in the remaining cases this dependence is studied by calculating the optimal designs numerically. In particular, it is demonstrated that D- and Ds-optimal designs have rather low efficiencies with respect to the T-optimality criterion.

Suggested Citation

  • Dette, Holger & Melas, Viatcheslav B. & Shpilev, Petr, 2017. "T-optimal discriminating designs for Fourier regression models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 196-206.
  • Handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:196-206
    DOI: 10.1016/j.csda.2016.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301475
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wiens, Douglas P., 2010. "Robustness of design for the testing of lack of fit and for estimation in binary response models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3371-3378, December.
    2. Douglas P. Wiens, 2009. "Robust discrimination designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 805-829, September.
    3. Tommasi, C. & López-Fidalgo, J., 2010. "Bayesian optimum designs for discriminating between models with any distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 143-150, January.
    4. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    5. Dariusz Uciński & Barbara Bogacka, 2005. "T‐optimum designs for discrimination between two multiresponse dynamic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 3-18, February.
    6. Stefanie Biedermann & Holger Dette & Philipp Hoffmann, 2009. "Constrained optimal discrimination designs for Fourier regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 143-157, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yamin Shen & Yuxuan Ma & Simin Deng & Chiou-Jye Huang & Ping-Huan Kuo, 2021. "An Ensemble Model based on Deep Learning and Data Preprocessing for Short-Term Electrical Load Forecasting," Sustainability, MDPI, vol. 13(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Subir & Dutta, Santanu, 2013. "Robustness of designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 193-203.
    2. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    3. Duarte, Belmiro P.M. & Wong, Weng Kee & Atkinson, Anthony C., 2015. "A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 11-24.
    4. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Ray-Bing Chen & Ping-Yang Chen & Cheng-Lin Hsu & Weng Kee Wong, 2020. "Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-30, October.
    6. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2016. "Simultaneous inference for the partially linear model with a multivariate unknown function when the covariates are measured with errors," SFB 649 Discussion Papers 2016-024, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. David Mogalle & Philipp Seufert & Jan Schwientek & Michael Bortz & Karl-Heinz Küfer, 2024. "Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization," Computational Statistics, Springer, vol. 39(5), pages 2451-2478, July.
    8. Laura Deldossi & Silvia Angela Osmetti & Chiara Tommasi, 2019. "Optimal design to discriminate between rival copula models for a bivariate binary response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 147-165, March.
    9. Min-Hsiao Tsai, 2012. "Efficient discriminating design for a class of nested polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 809-817, August.
    10. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    11. Chao, Shih-Kang & Härdle, Wolfgang K. & Huang, Chen, 2018. "Multivariate factorizable expectile regression with application to fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 1-19.
    12. Chao, Shih-Kang & Härdle, Wolfgang Karl & Huang, Chen, 2016. "Multivariate factorisable sparse asymmetric least squares regression," SFB 649 Discussion Papers 2016-058, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Bretz, Frank & Dette, Holger & Pinheiro, José, 2008. "Practical considerations for optimal designs in clinical dose finding studies," Technical Reports 2008,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Dette, Holger & Titoff, Stefanie, 2008. "Optimal discrimination designs," Technical Reports 2008,06, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Xiaojian Xu & Xiaoli Shang, 2014. "Optimal and robust designs for trigonometric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 753-769, August.
    16. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    17. Patan, Maciej & Bogacka, Barbara, 2007. "Optimum experimental designs for dynamic systems in the presence of correlated errors," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5644-5661, August.
    18. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    19. repec:hum:wpaper:sfb649dp2016-024 is not listed on IDEAS
    20. Elisa Perrone & Andreas Rappold & Werner G. Müller, 2017. "$$D_s$$ D s -optimality in copula models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 403-418, August.
    21. repec:hum:wpaper:sfb649dp2016-058 is not listed on IDEAS
    22. Nasir, Ehab A. & Pan, Rong, 2015. "Simulation-based Bayesian optimal ALT designs for model discrimination," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:196-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.