IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3458-3465.html
   My bibliography  Save this article

-optimal designs for a hierarchically ordered system of regression models

Author

Listed:
  • Yue, Rong-Xian
  • Liu, Xin

Abstract

-optimal designs are described for a kind of hierarchically ordered system of regression models with an r-dimensional response variable y. The components of y may be correlated with a known variance-covariance matrix [Sigma]. The present results show that -optimal designs for this system of regression models do not depend on [Sigma]. The -optimal designs are given for the systems of trigonometric and Haar wavelet regression models, respectively.

Suggested Citation

  • Yue, Rong-Xian & Liu, Xin, 2010. "-optimal designs for a hierarchically ordered system of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3458-3465, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3458-3465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00325-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dette, Holger & Wiens, Douglas P., 2008. "Robust designs for series estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4305-4324, May.
    2. Krafft, Olaf & Schaefer, Martin, 1992. "D-Optimal designs for a multivariate regression model," Journal of Multivariate Analysis, Elsevier, vol. 42(1), pages 130-140, July.
    3. Dette, Holger & Melas, Viatcheslav B. & Biedermann, Stefanie, 2002. "A functional-algebraic determination of D-optimal designs for trigonometric regression models on a partial circle," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 389-397, July.
    4. Holger Dette & Viatcheslav Melas & Andrey Pepelyshev, 2002. "D-Optimal Designs for Trigonometric Regression Models on a Partial Circle," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 945-959, December.
    5. Soo, Yuh-Wen & Bates, Douglas M., 1996. "Multiresponse spline regression," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 619-631, October.
    6. Yongge Tian & Agnes Herzberg, 2007. "Estimation and optimal designs for linear Haar-wavelet models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(3), pages 311-324, May.
    7. Tian, Yongge & Herzberg, Agnes M., 2006. "A-minimax and D-minimax robust optimal designs for approximately linear Haar-wavelet models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2942-2951, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    2. Alqallaf, Fatemah & Huda, S., 2013. "Minimax designs for the difference between two estimated responses in a trigonometric regression model," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 909-915.
    3. Stefanie Biedermann & Holger Dette & Philipp Hoffmann, 2009. "Constrained optimal discrimination designs for Fourier regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 143-157, March.
    4. Imhof, Lorens, 2000. "Optimum Designs for a Multiresponse Regression Model," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 120-131, January.
    5. Fu-Chuen Chang, 2005. "D-Optimal designs for weighted polynomial regression—A functional approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 833-844, December.
    6. Idais, Osama, 2020. "Locally optimal designs for multivariate generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    7. Katarzyna Filipiak & Augustyn Markiewicz & Anna Szczepańska, 2009. "Optimal designs under a multivariate linear model with additional nuisance parameters," Statistical Papers, Springer, vol. 50(4), pages 761-778, August.
    8. Konrad Engel & Sylke Gierer, 1993. "Optimal designs for models with block-block resp. treatment-treatment correlations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 40(1), pages 349-359, December.
    9. Yue, Rong-Xian & Liu, Xin & Chatterjee, Kashinath, 2014. "D-optimal designs for multiresponse linear models with a qualitative factor," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 57-69.
    10. Han, Cong, 2003. "A note on optimal designs for a two-part model," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 343-351, December.
    11. Tian, Yongge & Herzberg, Agnes M., 2006. "A-minimax and D-minimax robust optimal designs for approximately linear Haar-wavelet models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2942-2951, June.
    12. Wolfgang Bischoff, 1995. "Determinant formulas with applications to designing when the observations are correlated," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 385-399, June.
    13. Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2007. "Worst-case estimation for econometric models with unobservable components," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3330-3354, April.
    14. Xin Liu & Rong-Xian Yue, 2013. "A note on $$R$$ -optimal designs for multiresponse models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 483-493, May.
    15. Kao, Ming-Hung & Khogeer, Hazar, 2021. "Optimal designs for mixed continuous and binary responses with quantitative and qualitative factors," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    16. Yue, Rong-Xian, 2002. "Model-robust designs in multiresponse situations," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 369-379, July.
    17. Lin, Chun-Sui & Huang, Mong-Na Lo, 2010. "Optimal designs for estimating the control values in multi-univariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1055-1066, May.
    18. Xiaojian Xu & Xiaoli Shang, 2014. "Optimal and robust designs for trigonometric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 753-769, August.
    19. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    20. Holger Dette & Viatcheslav Melas & Piter Shpilev, 2007. "Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 655-673, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3458-3465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.