D-Optimal Designs for Trigonometric Regression Models on a Partial Circle
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1022436007242
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fu-Chuen Chang, 2005. "D-Optimal designs for weighted polynomial regression—A functional approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 833-844, December.
- Holger Dette & Viatcheslav Melas & Piter Shpilev, 2007. "Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 655-673, December.
- Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
- Alqallaf, Fatemah & Huda, S., 2013. "Minimax designs for the difference between two estimated responses in a trigonometric regression model," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 909-915.
- Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
- Xiaojian Xu & Xiaoli Shang, 2014. "Optimal and robust designs for trigonometric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 753-769, August.
- Yue, Rong-Xian & Liu, Xin, 2010. "-optimal designs for a hierarchically ordered system of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3458-3465, December.
- Xiaojian Xu & Xiaoli Shang, 2017. "D-optimal designs for full and reduced Fourier regression models," Statistical Papers, Springer, vol. 58(3), pages 811-829, September.
- Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
- Stefanie Biedermann & Holger Dette & Philipp Hoffmann, 2009. "Constrained optimal discrimination designs for Fourier regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 143-157, March.
More about this item
Keywords
Trigonometric regression; D-optimality; implicit function theorem; orthogonal polynomial;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:54:y:2002:i:4:p:945-959. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.