IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i2p247-254.html
   My bibliography  Save this article

Computing c-optimal experimental designs using the simplex method of linear programming

Author

Listed:
  • Harman, Radoslav
  • Jurík, Tomás

Abstract

An experimental design is said to be c-optimal if it minimizes the variance of the best linear unbiased estimator of , where c is a given vector of coefficients, and [beta] is an unknown vector parameter of the model in consideration. For a linear regression model with uncorrelated observations and a finite experimental domain, the problem of approximate c-optimality is equivalent to a specific linear programming problem. The most important consequence of the linear programming characterization is that it is possible to base the calculation of c-optimal designs on well-understood computational methods. In particular, the simplex algorithm of linear programming applied to the problem of c-optimality reduces to an exchange algorithm with different pivot rules corresponding to specific techniques of selecting design points for exchange. The algorithm can also be applied to "difficult" problems with singular c-optimal designs and relatively high dimension of [beta]. Moreover, the algorithm facilitates identification of the set of all the points that can support some c-optimal design. As an example, optimal designs for estimating the individual parameters of the trigonometric regression on a partial circle are computed.

Suggested Citation

  • Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:247-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00332-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dette, Holger & Melas, Viatcheslav B. & Biedermann, Stefanie, 2002. "A functional-algebraic determination of D-optimal designs for trigonometric regression models on a partial circle," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 389-397, July.
    2. Holger Dette & Viatcheslav Melas & Andrey Pepelyshev, 2002. "D-Optimal Designs for Trigonometric Regression Models on a Partial Circle," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 945-959, December.
    3. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    4. Holger Dette & Viatcheslav Melas & Piter Shpilev, 2007. "Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 655-673, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Cheng & Kouri, Drew P. & Uryasev, Stan, 2024. "Efficient and robust optimal design for quantile regression based on linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    2. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    3. Michal Černý & Milan Hladík, 2012. "Two complexity results on c-optimality in experimental design," Computational Optimization and Applications, Springer, vol. 51(3), pages 1397-1408, April.
    4. Rodríguez-Díaz, Juan M., 2017. "Computation of c-optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 287-296.
    5. Katarína Burclová & Andrej Pázman, 2016. "Optimal design of experiments via linear programming," Statistical Papers, Springer, vol. 57(4), pages 893-910, December.
    6. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    7. Elham Yousefi & Werner G. Müller, 2023. "Impact of the Error Structure on the Design and Analysis of Enzyme Kinetic Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 31-56, April.
    8. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
    9. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alqallaf, Fatemah & Huda, S., 2013. "Minimax designs for the difference between two estimated responses in a trigonometric regression model," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 909-915.
    2. Stefanie Biedermann & Holger Dette & Philipp Hoffmann, 2009. "Constrained optimal discrimination designs for Fourier regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 143-157, March.
    3. Xiaojian Xu & Xiaoli Shang, 2014. "Optimal and robust designs for trigonometric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 753-769, August.
    4. Yue, Rong-Xian & Liu, Xin, 2010. "-optimal designs for a hierarchically ordered system of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3458-3465, December.
    5. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    6. Xiaojian Xu & Xiaoli Shang, 2017. "D-optimal designs for full and reduced Fourier regression models," Statistical Papers, Springer, vol. 58(3), pages 811-829, September.
    7. Fu-Chuen Chang, 2005. "D-Optimal designs for weighted polynomial regression—A functional approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 833-844, December.
    8. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    9. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    10. Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Dette, Holger & Melas, Viatcheslav B. & Pepelyshev, Andrey, 2006. "Optimal designs for free knot least squares splines," Technical Reports 2006,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Dette, Holger & Melas, Viatcheslav B., 2008. "Optimal designs for estimating pairs of coefficients in Fourier regression models," Technical Reports 2008,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Li, Guanghui & Zhang, Chongqi, 2017. "The pseudo component transformation design for experiment with mixture," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 19-24.
    14. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    16. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    17. Dette, Holger & Biedermann, Stefanie & Pepelyshev, Andrey, 2004. "Some robust design strategies for percentile estimation in binary response models," Technical Reports 2004,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    18. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Geometric construction of optimal designs for dose-responsemodels with two parameters," Technical Reports 2005,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
    20. Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:247-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.