IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v115y2013icp193-203.html
   My bibliography  Save this article

Robustness of designs for model discrimination

Author

Listed:
  • Ghosh, Subir
  • Dutta, Santanu

Abstract

A class of models is considered to describe the data to be collected using a design of experiment. One model within the class will possibly describe the data more adequately than the others which will be the “true model” but we do not know its identification. In the pioneering work of Atkinson and Fedorov (1975) [4,3], the discrimination criterion T optimality was introduced for pairwise discrimination between models with the assumption that one of the models being the true model. The recent papers of Dette and Titoff (2009) [6], Atkinson (2010) [1], Dette, Melas and Shpilev (2012) [5] presented fundamental research on T optimal designs. A large number of other researchers also made major contributions to the area of finding T optimal designs with their references available in the papers mentioned. This paper considers the problem of pairwise discrimination between two competing models when the true model may or may not be one of them. The characterization of robustness of designs are given under the different possible true models within the class of models considered under the proposed J and I optimality criterion functions. The J criterion is in fact equivalent to the T criterion when the true model is indeed one of the two competing models in their pairwise comparison. Illustrative examples are presented for the particular polynomial regression models and optimum designs are also presented for a class of designs D with a special equal replications by considering the Dette–Titoff class and the Dette–Melas–Shpilev representation. The Jd and Id optimality criterion functions are also proposed to deal with the unknown model parameters in the J and I optimality criterion functions.

Suggested Citation

  • Ghosh, Subir & Dutta, Santanu, 2013. "Robustness of designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 193-203.
  • Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:193-203
    DOI: 10.1016/j.jmva.2012.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12002400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Douglas P. Wiens, 2009. "Robust discrimination designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 805-829, September.
    2. Tommasi, C. & López-Fidalgo, J., 2010. "Bayesian optimum designs for discriminating between models with any distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 143-150, January.
    3. Stefanie Biedermann & Holger Dette & Philipp Hoffmann, 2009. "Constrained optimal discrimination designs for Fourier regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 143-157, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dette, Holger & Melas, Viatcheslav B. & Shpilev, Petr, 2017. "T-optimal discriminating designs for Fourier regression models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 196-206.
    2. Min-Hsiao Tsai, 2012. "Efficient discriminating design for a class of nested polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 809-817, August.
    3. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    4. Bretz, Frank & Dette, Holger & Pinheiro, José, 2008. "Practical considerations for optimal designs in clinical dose finding studies," Technical Reports 2008,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Xiaojian Xu & Xiaoli Shang, 2014. "Optimal and robust designs for trigonometric regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 753-769, August.
    6. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    7. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    8. Duarte, Belmiro P.M. & Wong, Weng Kee & Atkinson, Anthony C., 2015. "A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 11-24.
    9. Nasir, Ehab A. & Pan, Rong, 2015. "Simulation-based Bayesian optimal ALT designs for model discrimination," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 1-9.
    10. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    11. Abebe, Haftom T. & Tan, Frans E.S. & Van Breukelen, Gerard J.P. & Berger, Martijn P.F., 2014. "Bayesian D-optimal designs for the two parameter logistic mixed effects model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1066-1076.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:193-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.