IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v183y2021ics0047259x20302955.html
   My bibliography  Save this article

Heterogeneous hypergeometric functions with two matrix arguments and the exact distribution of the largest eigenvalue of a singular beta-Wishart matrix

Author

Listed:
  • Shimizu, Koki
  • Hashiguchi, Hiroki

Abstract

This paper discusses certain properties of heterogeneous hypergeometric functions with two matrix arguments. These functions are newly defined but have already appeared in statistical literature and are useful when dealing with the derivation of certain distributions for the eigenvalues of singular beta-Wishart matrices. The joint density function of the eigenvalues and the distribution of the largest eigenvalue can be expressed in terms of heterogeneous hypergeometric functions. Exact computation of the distribution of the largest eigenvalue is conducted for real and complex cases.

Suggested Citation

  • Shimizu, Koki & Hashiguchi, Hiroki, 2021. "Heterogeneous hypergeometric functions with two matrix arguments and the exact distribution of the largest eigenvalue of a singular beta-Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x20302955
    DOI: 10.1016/j.jmva.2020.104714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiani, Marco, 2014. "Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy–Widom distribution," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 69-81.
    2. Hashiguchi, Hiroki & Takayama, Nobuki & Takemura, Akimichi, 2018. "Distribution of the ratio of two Wishart matrices and cumulative probability evaluation by the holonomic gradient method," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 270-278.
    3. Díaz-García, José A. & Jáimez, Ramón Gutierrez & Mardia, Kanti V., 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 73-87, October.
    4. Arjun K. Gupta & Daya K. Nagar, 2000. "Matrix-variate beta distribution," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 24, pages 1-11, January.
    5. Hashiguchi, Hiroki & Numata, Yasuhide & Takayama, Nobuki & Takemura, Akimichi, 2013. "The holonomic gradient method for the distribution function of the largest root of a Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 296-312.
    6. Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
    7. Khatri, C. G., 1972. "On the exact finite series distribution of the smallest or the largest root of matrices in three situations," Journal of Multivariate Analysis, Elsevier, vol. 2(2), pages 201-207, June.
    8. Hashiguchi, Hiroki & Nakagawa, Shigekazu & Niki, Naoto, 2000. "Simplification of the Laplace–Beltrami operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(5), pages 489-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shimizu, Koki & Hashiguchi, Hiroki, 2022. "Algorithm for the product of Jack polynomials and its application to the sphericity test," Statistics & Probability Letters, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashiguchi, Hiroki & Takayama, Nobuki & Takemura, Akimichi, 2018. "Distribution of the ratio of two Wishart matrices and cumulative probability evaluation by the holonomic gradient method," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 270-278.
    2. Taras Bodnar & Arjun Gupta, 2013. "An exact test for a column of the covariance matrix based on a single observation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 847-855, August.
    3. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    5. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    6. Daya K. Nagar & Raúl Alejandro Morán-Vásquez & Arjun K. Gupta, 2015. "Extended Matrix Variate Hypergeometric Functions and Matrix Variate Distributions," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-15, January.
    7. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    8. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2020. "The economic drivers of volatility and uncertainty," Temi di discussione (Economic working papers) 1285, Bank of Italy, Economic Research and International Relations Area.
    9. Bodnar, Taras & Mazur, Stepan & Muhinyuza, Stanislas & Parolya, Nestor, 2017. "On the product of a singular Wishart matrix and a singular Gaussian vector in high dimensions," Working Papers 2017:7, Örebro University, School of Business.
    10. Nardo, Elvira Di, 2020. "Polynomial traces and elementary symmetric functions in the latent roots of a non-central Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    11. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Bodnar Taras & Schmid Wolfgang, 2011. "On the exact distribution of the estimated expected utility portfolio weights: Theory and applications," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 319-342, December.
    13. Mark Bognanni, 2018. "A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification," Working Papers (Old Series) 1811, Federal Reserve Bank of Cleveland.
    14. José Díaz-García & Francisco Caro-Lopera, 2012. "Generalised shape theory via SV decomposition I," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(4), pages 541-565, May.
    15. Shokofeh Zinodiny & Saralees Nadarajah, 2022. "Matrix Variate Two-Sided Power Distribution," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 179-194, March.
    16. Dette, Holger & Tomecki, Dominik, 2019. "Determinants of block Hankel matrices for random matrix-valued measures," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5200-5235.
    17. Saralees Nadarajah, 2009. "A bivariate distribution with gamma and beta marginals with application to drought data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(3), pages 277-301.
    18. Caro-Lopera, Francisco J. & González Farías, Graciela & Balakrishnan, Narayanaswamy, 2016. "Matrix-variate distribution theory under elliptical models-4: Joint distribution of latent roots of covariance matrix and the largest and smallest latent roots," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 224-235.
    19. Liu, Jin Shan & Ip, Wai Cheung & Wong, Heung, 2009. "Predictive inference for singular multivariate elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1440-1446, August.
    20. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x20302955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.