IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v75y2012i5p601-620.html
   My bibliography  Save this article

Moment-based estimation of extendible Marshall-Olkin copulas

Author

Listed:
  • Christian Hering
  • Jan-Frederik Mai

Abstract

No abstract is available for this item.

Suggested Citation

  • Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
  • Handle: RePEc:spr:metrik:v:75:y:2012:i:5:p:601-620
    DOI: 10.1007/s00184-011-0344-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-011-0344-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-011-0344-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    2. Ruiz-Rivas, Carmen & Cuadras, Carles M., 1988. "Inference properties of a one-parameter curved exponential family of distributions with given marginals," Journal of Multivariate Analysis, Elsevier, vol. 27(2), pages 447-456, November.
    3. G. Heinrich & U. Jensen, 1995. "Parameter estimation for a bivariate lifetime distribution in reliability with multivariate extensions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 42(1), pages 49-65, December.
    4. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durante, Fabrizio & Okhrin, Ostap, 2014. "Estimation procedures for exchangeable Marshall copulas with hydrological application," SFB 649 Discussion Papers 2014-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Ying Li & Wei Gu & Weijia Cui & Zhiyun Chang & Yingjun Xu, 2015. "Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1289-1303, June.
    3. Baglioni, Angelo & Cherubini, Umberto, 2013. "Within and between systemic country risk. Theory and evidence from the sovereign crisis in Europe," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1581-1597.
    4. repec:hum:wpaper:sfb649dp2014-014 is not listed on IDEAS
    5. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    6. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    2. Rakesh Ranjan & Vastoshpati Shastri, 2019. "Posterior and predictive inferences for Marshall Olkin bivariate Weibull distribution via Markov chain Monte Carlo methods," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1535-1543, December.
    3. Kundu, Debasis & Gupta, Arjun K., 2013. "Bayes estimation for the Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 271-281.
    4. Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
    5. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    6. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    7. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    8. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    9. Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
    10. Mittnik, Stefan & Yener, Tina, 2008. "Value-at-Risk and expected shortfall for rare events," CFS Working Paper Series 2008/14, Center for Financial Studies (CFS).
    11. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    12. Yinghui Dong & Kam C. Yuen & Guojing Wang & Chongfeng Wu, 2016. "A Reduced-Form Model for Correlated Defaults with Regime-Switching Shot Noise Intensities," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 459-486, June.
    13. Balakrishna, B S, 2010. "Levy Subordinator Model: A Two Parameter Model of Default Dependency," MPRA Paper 26274, University Library of Munich, Germany.
    14. Bielecki, Tomasz R. & Cousin, Areski & Crépey, Stéphane & Herbertsson, Alexander, 2011. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model (Previous title: Dynamic Modeling of Portfolio Credit Risk with Common Shocks)," Working Papers in Economics 502, University of Gothenburg, Department of Economics, revised 12 Oct 2012.
    15. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.
    16. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    17. Beer, Simone & Braun, Alexander & Marugg, Andrin, 2019. "Pricing industry loss warranties in a Lévy–Frailty framework," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 171-181.
    18. Damiano Brigo & Cristin Buescu & Massimo Morini, 2011. "Impact of the first to default time on Bilateral CVA," Papers 1106.3496, arXiv.org.
    19. Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
    20. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:75:y:2012:i:5:p:601-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.