IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v82y2019i8d10.1007_s00184-019-00715-8.html
   My bibliography  Save this article

Exogenous shock models: analytical characterization and probabilistic construction

Author

Listed:
  • Matthias Scherer

    (Technische Universität München)

  • Henrik Sloot

    (Technische Universität München)

Abstract

A new characterization for survival functions of multivariate failure-times arising in exogenous shock models with non-negative, continuous, and unbounded shocks is presented. These survival functions are the product of their ordered and individually transformed arguments. The involved transformations may depend on the specific order of the arguments and must fulfill a monotonicity condition. Conversely, every survival function of that form can be constructed using an exogenous shock model with independent and non-homogeneous shocks.

Suggested Citation

  • Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
  • Handle: RePEc:spr:metrik:v:82:y:2019:i:8:d:10.1007_s00184-019-00715-8
    DOI: 10.1007/s00184-019-00715-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-019-00715-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-019-00715-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. Youssef Elouerkhaoui, 2007. "Pricing And Hedging In A Dynamic Credit Model," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 6, pages 111-139, World Scientific Publishing Co. Pte. Ltd..
    3. Marco Scarsini & Pietro Muliere, 1987. "Characterization of a Marshall-Olkin type class of distributions," Post-Print hal-00542248, HAL.
    4. Li, Xiaohu & Pellerey, Franco, 2011. "Generalized Marshall-Olkin distributions and related bivariate aging properties," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1399-1409, November.
    5. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    6. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
    7. Youssef Elouerkhaoui, 2007. "Pricing And Hedging In A Dynamic Credit Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 703-731.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunju Lee & Ji Hwan Cha, 2021. "A general multivariate new better than used (MNBU) distribution and its properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 27-46, January.
    2. Brück, Florian, 2023. "Exact simulation of continuous max-id processes with applications to exchangeable max-id sequences," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    2. Sabrina Mulinacci, 2017. "A systemic shock model for too big to fail financial institutions," Papers 1704.02160, arXiv.org, revised Apr 2017.
    3. Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
    4. Umberto Cherubini & Sabrina Mulinacci, 2021. "Hierarchical Archimedean Dependence in Common Shock Models," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 143-163, March.
    5. Bielecki, Tomasz R. & Cousin, Areski & Crépey, Stéphane & Herbertsson, Alexander, 2011. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model (Previous title: Dynamic Modeling of Portfolio Credit Risk with Common Shocks)," Working Papers in Economics 502, University of Gothenburg, Department of Economics, revised 12 Oct 2012.
    6. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    7. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    8. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    9. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    10. Jianhua Lin & Xiaohu Li, 2014. "Multivariate Generalized Marshall–Olkin Distributions and Copulas," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 53-78, March.
    11. Bielecki, T.R. & Cousin, A. & Crépey, S. & Herbertsson, Alexander, 2012. "A Markov Copula Model of Portfolio Credit Risk with Stochastic Intensities and Random Recoveries," Working Papers in Economics 545, University of Gothenburg, Department of Economics.
    12. Albanese Claudio & Armenti Yannick & Crépey Stéphane, 2020. "XVA metrics for CCP optimization," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 25-53, January.
    13. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    14. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2018. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Working Papers hal-01710394, HAL.
    15. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    16. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    17. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2019. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Post-Print hal-01710394, HAL.
    18. Sabrina Mulinacci, 2015. "Archimedean-based Marshall-Olkin Distributions and Related Copula Functions," Papers 1502.01912, arXiv.org.
    19. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    20. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:82:y:2019:i:8:d:10.1007_s00184-019-00715-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.