IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v161y2014i1d10.1007_s10957-013-0318-4.html
   My bibliography  Save this article

Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model

Author

Listed:
  • Tomasz R. Bielecki

    (Illinois Institute of Technology)

  • Areski Cousin

    (LSAF)

  • Stéphane Crépey

    (Université d’Évry Val d’Essonne)

  • Alexander Herbertsson

    (University of Gothenburg)

Abstract

We devise a bottom-up dynamic model of portfolio credit risk where instantaneous contagion is represented by the possibility of simultaneous defaults. Due to a Markovian copula nature of the model, calibration of marginals and dependence parameters can be performed separately using a two-step procedure, much like in a standard static copula setup. In this sense this solves the bottom-up top-down puzzle which the CDO industry had been trying to do for a long time. This model can be used for any dynamic portfolio credit risk issue, such as dynamic hedging of CDOs by CDSs, or CVA computations on credit portfolios.

Suggested Citation

  • Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
  • Handle: RePEc:spr:joptap:v:161:y:2014:i:1:d:10.1007_s10957-013-0318-4
    DOI: 10.1007/s10957-013-0318-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0318-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0318-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Youssef Elouerkhaoui, 2007. "Pricing And Hedging In A Dynamic Credit Model," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 6, pages 111-139, World Scientific Publishing Co. Pte. Ltd..
    2. T. R. Bielecki & S. Crépey & M. Jeanblanc & B. Zargari, 2012. "Valuation And Hedging Of Cds Counterparty Exposure In A Markov Copula Model," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 4, pages 75-113, World Scientific Publishing Co. Pte. Ltd..
    3. Damiano Brigo & Andrea Pallavicini & Roberto Torresetti, 2007. "Cluster-Based Extension Of The Generalized Poisson Loss Dynamics And Consistency With Single Names," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 2, pages 15-39, World Scientific Publishing Co. Pte. Ltd..
    4. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    5. Tomasz Bielecki & Stephane Crepey & Monique Jeanblanc, 2010. "Up and down credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1137-1151.
    6. T. R. Bielecki & S. Crépey & M. Jeanblanc & B. Zargari, 2012. "Valuation And Hedging Of Cds Counterparty Exposure In A Markov Copula Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-39.
    7. Youssef Elouerkhaoui, 2007. "Pricing And Hedging In A Dynamic Credit Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 703-731.
    8. S. Crépey & M. Jeanblanc & D. Wu, 2013. "Informationally Dynamized Gaussian Copula," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 1-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stéphane Crépey & Shiqi Song, 2018. "Counterparty risk and funding: immersion and beyond," Working Papers hal-01764403, HAL.
    2. Chamizo, Álvaro & Novales, Alfonso, 2021. "Evaluation of market risk associated with hedging a credit derivative portfolio," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 411-430.
    3. Yu-Sin Chang, 2018. "Systemic Risk and the Dependence Structures," Papers 1809.03425, arXiv.org.
    4. Herbertsson, Alexander, 2022. "Saddlepoint approximations for credit portfolios with stochastic recoveries," Working Papers in Economics 823, University of Gothenburg, Department of Economics.
    5. Stéphane Crépey & Shiqi Song, 2016. "Counterparty risk and funding: immersion and beyond," Finance and Stochastics, Springer, vol. 20(4), pages 901-930, October.
    6. Delia Coculescu & Gabriele Visentin, 2017. "A default system with overspilling contagion," Papers 1709.09255, arXiv.org, revised May 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielecki, T.R. & Cousin, A. & Crépey, S. & Herbertsson, Alexander, 2012. "A Markov Copula Model of Portfolio Credit Risk with Stochastic Intensities and Random Recoveries," Working Papers in Economics 545, University of Gothenburg, Department of Economics.
    2. Bielecki, Tomasz R. & Cousin, Areski & Crépey, Stéphane & Herbertsson, Alexander, 2011. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model (Previous title: Dynamic Modeling of Portfolio Credit Risk with Common Shocks)," Working Papers in Economics 502, University of Gothenburg, Department of Economics, revised 12 Oct 2012.
    3. Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
    4. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    5. Sabrina Mulinacci, 2017. "A systemic shock model for too big to fail financial institutions," Papers 1704.02160, arXiv.org, revised Apr 2017.
    6. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    7. Albanese Claudio & Armenti Yannick & Crépey Stéphane, 2020. "XVA metrics for CCP optimization," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 25-53, January.
    8. Pavel V. Gapeev & Monique Jeanblanc, 2020. "Credit Default Swaps In Two-Dimensional Models With Various Informations Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-28, March.
    9. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2018. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Working Papers hal-01710394, HAL.
    10. Gapeev, Pavel V. & Jeanblanc, Monique, 2021. "First-to-default and second-to-default options in models with various information flows," LSE Research Online Documents on Economics 110750, London School of Economics and Political Science, LSE Library.
    11. Claudio Albanese & Stéphane Crépey & Rodney Hoskinson & Bouazza Saadeddine, 2021. "XVA analysis from the balance sheet," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 99-123, January.
    12. Matthias Scherer & Thorsten Schulz, 2016. "Extremal Dependence For Bilateral Credit Valuation Adjustments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-21, November.
    13. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2019. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Post-Print hal-01710394, HAL.
    14. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2020. "Robust XVA," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 738-781, July.
    15. Brigo, Damiano & Mai, Jan-Frederik & Scherer, Matthias, 2016. "Markov multi-variate survival indicators for default simulation as a new characterization of the Marshall–Olkin law," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 60-66.
    16. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    17. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    18. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    19. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    20. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:161:y:2014:i:1:d:10.1007_s10957-013-0318-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.