IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v77y2014icp98-112.html
   My bibliography  Save this article

Multivariate distributions with proportional reversed hazard marginals

Author

Listed:
  • Kundu, Debasis
  • Franco, Manuel
  • Vivo, Juana-Maria

Abstract

Several univariate proportional reversed hazard models have been proposed in the literature. Recently, Kundu and Gupta (2010) proposed a class of bivariate models with proportional reversed hazard marginals. It is observed that the proposed bivariate proportional reversed hazard models have a singular component. In this paper we introduce the multivariate proportional reversed hazard models along the same manner. Moreover, it is observed that the proposed multivariate proportional reversed hazard model can be obtained from the Marshall–Olkin copula. The multivariate proportional reversed hazard models also have a singular component, and their marginals have proportional reversed hazard distributions. The multivariate ageing and the dependence properties are discussed in details. We further provide some dependence measure specifically for the bivariate case. The maximum likelihood estimators of the unknown parameters cannot be expressed in explicit forms. We propose to use the EM algorithm to compute the maximum likelihood estimators. One trivariate data set has been analysed for illustrative purposes.

Suggested Citation

  • Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
  • Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:98-112
    DOI: 10.1016/j.csda.2014.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000358
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boland, Philip J. & Hollander, Myles & Joag-Dev, Kumar & Kochar, Subhash, 1996. "Bivariate Dependence Properties of Order Statistics," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 75-89, January.
    2. Colangelo, Antonio & Hu, Taizhong & Shaked, Moshe, 2008. "Conditional orderings and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 358-371, March.
    3. Dimitris Karlis, 2003. "ML estimation for multivariate shock models via an EM algorithm," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 817-830, December.
    4. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    5. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    6. Johnson, N. L. & Kotz, Samuel, 1975. "A vector multivariate hazard rate," Journal of Multivariate Analysis, Elsevier, vol. 5(1), pages 53-66, March.
    7. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 581-593, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Franco & Juana-María Vivo & Debasis Kundu, 2020. "A Generator of Bivariate Distributions: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    2. Marshall, Albert W. & Olkin, Ingram, 2015. "A bivariate Gompertz–Makeham life distribution," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 219-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franco, Manuel & Vivo, Juana-María, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 491-499, March.
    2. Debasis Kundu, 2022. "Bivariate Semi-parametric Singular Family of Distributions and its Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 846-872, November.
    3. Colangelo Antonio, 2005. "Multivariate hazard orderings of discrete random vectors," Economics and Quantitative Methods qf05010, Department of Economics, University of Insubria.
    4. Indranil Ghosh & Osborne Banks, 2021. "A Study of Bivariate Generalized Pareto Distribution and its Dependence Structure Among Model Parameters," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 575-604, November.
    5. Ori Davidov & Amir Herman, 2011. "Multivariate Stochastic Orders Induced by Case-Control Sampling," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 139-154, March.
    6. Guan, Qiang & Tang, Yincai & Xu, Ancha, 2013. "Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 299-313.
    7. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    8. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    9. Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.
    10. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    11. Muhammad Mohsin & Hannes Kazianka & Jürgen Pilz & Albrecht Gebhardt, 2014. "A new bivariate exponential distribution for modeling moderately negative dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 123-148, March.
    12. Cai, Jun & Wei, Wei, 2012. "Optimal reinsurance with positively dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 57-63.
    13. Kundu, Debasis & Gupta, Arjun K., 2013. "Bayes estimation for the Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 271-281.
    14. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    15. Zhuang, Weiwei & Yao, Junchao & Hu, Taizhong, 2010. "Conditional ordering of order statistics," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 640-644, March.
    16. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    17. Kolev, Nikolai, 2016. "Characterizations of the class of bivariate Gompertz distributions," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 173-179.
    18. M. Shafaei Noughabi & M. Kayid, 2019. "Bivariate quantile residual life: a characterization theorem and statistical properties," Statistical Papers, Springer, vol. 60(6), pages 2001-2012, December.
    19. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    20. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:98-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.