IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/26274.html
   My bibliography  Save this paper

Levy Subordinator Model: A Two Parameter Model of Default Dependency

Author

Listed:
  • Balakrishna, B S

Abstract

Subordinators are Levy processes with non-decreasing sample paths. They are natural processes to model default dependency. They help ensure that the loss process is non-decreasing leading to a promising class of dynamic models. The simplest subordinator is the Levy subordinator, a maximally skewed stable process with index of stability 1/2. Interestingly, this simplest subordinator turns out to be the appropriate choice as the basic process in modeling default dependency. It involves just two parameters to assess dependency risk, a measure of correlation and that of the likelihood of a catastrophe. Its attractive feature is that it admits a closed form expression for its distribution function. This helps in automatic calibration to individual hazard rate curves and efficient pricing with Fast Fourier Transform techniques. It is structured similar to the one-factor Gaussian copula model and can easily be implemented within the framework of the existing computational infrastructure. As it turns out, the Gaussian copula model can itself be recast into this framework highlighting its limitations. The model can also be investigated numerically with a Monte Carlo simulation algorithm. As is now well appreciated, random recovery is helpful in better pricing of the senior tranches and the model admits a tractable framework of random recovery. The model is investigated numerically and the implied base correlations are presented over a wide range of its parameters. The investigation also demonstrates its ability to generate reasonable hedge ratios.

Suggested Citation

  • Balakrishna, B S, 2010. "Levy Subordinator Model: A Two Parameter Model of Default Dependency," MPRA Paper 26274, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:26274
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/26274/1/MPRA_paper_26274.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/29741/2/MPRA_paper_29741.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/31889/2/MPRA_paper_31889.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/32882/1/MPRA_paper_32882.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damiano Brigo & Andrea Pallavicini & Roberto Torresetti, 2009. "Credit models and the crisis, or: how I learned to stop worrying and love the CDOs," Papers 0912.5427, arXiv.org, revised Feb 2010.
    2. Alexander Chapovsky & Andrew Rennie & Pedro Tavares, 2007. "Stochastic Intensity Modeling For Structured Credit Exotics," World Scientific Book Chapters, in: Alexander Lipton & Andrew Rennie (ed.), Credit Correlation Life After Copulas, chapter 3, pages 41-60, World Scientific Publishing Co. Pte. Ltd..
    3. Balakrishna, B S, 2007. "Delayed Default Dependency and Default Contagion," MPRA Paper 14921, University Library of Munich, Germany, revised 15 May 2007.
    4. Damiano Brigo & Andrea Pallavicini & Roberto Torresetti, 2008. "Default correlation, cluster dynamics and single names: The GPCL dynamical loss model," Papers 0812.4163, arXiv.org.
    5. Balakrishna, B S, 2010. "Levy Subordinator Model of Default Dependency," MPRA Paper 21386, University Library of Munich, Germany.
    6. Balakrishna, B S, 2008. "Levy Density Based Intensity Modeling of the Correlation Smile," MPRA Paper 14922, University Library of Munich, Germany, revised 06 Apr 2009.
    7. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    8. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    9. Alexander Chapovsky & Andrew Rennie & Pedro Tavares, 2007. "Stochastic Intensity Modeling For Structured Credit Exotics," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 633-652.
    10. Giuseppe Di Graziano & L. C. G. Rogers, 2009. "A Dynamic Approach To The Modeling Of Correlation Credit Derivatives Using Markov Chains," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 45-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balakrishna, B S, 2010. "Levy Subordinator Model of Default Dependency," MPRA Paper 21386, University Library of Munich, Germany.
    2. Balakrishna, B S, 2008. "Levy Density Based Intensity Modeling of the Correlation Smile," MPRA Paper 14922, University Library of Munich, Germany, revised 06 Apr 2009.
    3. Damiano Brigo & Andrea Pallavicini & Roberto Torresetti, 2009. "Credit models and the crisis, or: how I learned to stop worrying and love the CDOs," Papers 0912.5427, arXiv.org, revised Feb 2010.
    4. Yinghui Dong & Kam C. Yuen & Guojing Wang & Chongfeng Wu, 2016. "A Reduced-Form Model for Correlated Defaults with Regime-Switching Shot Noise Intensities," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 459-486, June.
    5. Damiano Brigo & Andrea Pallavicini & Roberto Torresetti, 2008. "Default correlation, cluster dynamics and single names: The GPCL dynamical loss model," Papers 0812.4163, arXiv.org.
    6. Chao Xu & Yinghui Dong & Guojing Wang, 2019. "The pricing of defaultable bonds under a regime-switching jump-diffusion model with stochastic default barrier," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(9), pages 2185-2205, May.
    7. Balakrishna, B S, 2006. "A Semi-Analytical Parametric Model for Dependent Defaults," MPRA Paper 14918, University Library of Munich, Germany, revised 15 May 2007.
    8. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    9. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    10. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    11. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    12. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    13. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    14. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    15. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    16. Ichiro Fukunaga, 2007. "Imperfect Common Knowledge, Staggered Price Setting, and the Effects of Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1711-1739, October.
    17. Albertazzi, Ugo & Gambacorta, Leonardo, 2009. "Bank profitability and the business cycle," Journal of Financial Stability, Elsevier, vol. 5(4), pages 393-409, December.
    18. Beck, Thorsten & Demirgüç-Kunt, Asli & Merrouche, Ouarda, 2013. "Islamic vs. conventional banking: Business model, efficiency and stability," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 433-447.
    19. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    20. McMahon, Rob, 2020. "Co-developing digital inclusion policy and programming with indigenous partners: Interventions from Canada," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 9(2), pages 1-26.

    More about this item

    Keywords

    default risk; correlation smile; CDO; Levy process; subordinator; semi-analytical; FFT; copula; catastrophe;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:26274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.