IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/200814.html
   My bibliography  Save this paper

Value-at-Risk and expected shortfall for rare events

Author

Listed:
  • Mittnik, Stefan
  • Yener, Tina

Abstract

We show that the use of correlations for modeling dependencies may lead to counterintuitive behavior of risk measures, such as Value-at-Risk (VaR) and Expected Short- fall (ES), when the risk of very rare events is assessed via Monte-Carlo techniques. The phenomenon is demonstrated for mixture models adapted from credit risk analysis as well as for common Poisson-shock models used in reliability theory. An obvious implication of this finding pertains to the analysis of operational risk. The alleged incentive suggested by the New Basel Capital Accord (Basel II), amely decreasing minimum capital requirements by allowing for less than perfect correlation, may not necessarily be attainable.

Suggested Citation

  • Mittnik, Stefan & Yener, Tina, 2008. "Value-at-Risk and expected shortfall for rare events," CFS Working Paper Series 2008/14, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:200814
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25549/1/577548247.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    2. Tomasz R. Bielecki & Areski Cousin & Stéphane Crépey & Alexander Herbertsson, 2014. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 90-102, April.
    3. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    4. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    5. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    6. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    7. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    8. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.
    9. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    10. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    11. Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
    12. Shah, Anand, 2016. "Pricing and Risk Mitigation Analysis of a Cyber Liability Insurance using Gaussian, t and Gumbel Copulas – A case for Cyber Risk Index," MPRA Paper 111968, University Library of Munich, Germany.
    13. Kokol Bukovšek, Damjana & Košir, Tomaž & Mojškerc, Blaž & Omladič, Matjaž, 2022. "Extreme generators of shock induced copulas," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    14. Yuki Itoh, 2009. "Recovery Process Model for Two Companies," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(4), pages 287-331, December.
    15. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
    16. Yuki Itoh, 2008. "Recovery Process Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 15(3), pages 307-347, December.
    17. Yinghui Dong & Kam C. Yuen & Guojing Wang & Chongfeng Wu, 2016. "A Reduced-Form Model for Correlated Defaults with Regime-Switching Shot Noise Intensities," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 459-486, June.
    18. Balakrishna, B S, 2010. "Levy Subordinator Model: A Two Parameter Model of Default Dependency," MPRA Paper 26274, University Library of Munich, Germany.
    19. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    20. Bielecki, Tomasz R. & Cousin, Areski & Crépey, Stéphane & Herbertsson, Alexander, 2011. "Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model (Previous title: Dynamic Modeling of Portfolio Credit Risk with Common Shocks)," Working Papers in Economics 502, University of Gothenburg, Department of Economics, revised 12 Oct 2012.

    More about this item

    Keywords

    Operational Risk; Latent Variables; Correlated Events;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:200814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ifkcfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.