IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v10y2014i1p17n6.html
   My bibliography  Save this article

Locally Efficient Estimation of Marginal Treatment Effects When Outcomes Are Correlated: Is the Prize Worth the Chase?

Author

Listed:
  • Stephens Alisa

    (Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA)

  • Tchetgen Tchetgen Eric

    (Department of Biostatistics, Department of Epidemiology, Harvard University; Victor De Gruttola, Department of Biostatistics, Harvard University)

  • De Gruttola Victor

    (Harvard School of Public Health, Boston, MA, USA)

Abstract

Semiparametric methods have been developed to increase efficiency of inferences in randomized trials by incorporating baseline covariates. Locally efficient estimators of marginal treatment effects, which achieve minimum variance under an assumed model, are available for settings in which outcomes are independent. The value of the pursuit of locally efficient estimators in other settings, such as when outcomes are multivariate, is often debated. We derive and evaluate semiparametric locally efficient estimators of marginal mean treatment effects when outcomes are correlated; such outcomes occur in randomized studies with clustered or repeated-measures responses. The resulting estimating equations modify existing generalized estimating equations (GEE) by identifying the efficient score under a mean model for marginal effects when data contain baseline covariates. Locally efficient estimators are implemented for longitudinal data with continuous outcomes and clustered data with binary outcomes. Methods are illustrated through application to AIDS Clinical Trial Group Study 398, a longitudinal randomized clinical trial that compared the effects of various protease inhibitors in HIV-positive subjects who had experienced antiretroviral therapy failure. In addition, extensive simulation studies characterize settings in which locally efficient estimators result in efficiency gains over suboptimal estimators and assess their feasibility in practice.

Suggested Citation

  • Stephens Alisa & Tchetgen Tchetgen Eric & De Gruttola Victor, 2014. "Locally Efficient Estimation of Marginal Treatment Effects When Outcomes Are Correlated: Is the Prize Worth the Chase?," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 59-75, May.
  • Handle: RePEc:bpj:ijbist:v:10:y:2014:i:1:p:17:n:6
    DOI: 10.1515/ijb-2013-0031
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2013-0031
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2013-0031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zengri Wang, 2003. "Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function," Biometrika, Biometrika Trust, vol. 90(4), pages 765-775, December.
    2. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
    3. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    4. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    5. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    6. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    2. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    3. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    4. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    5. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    6. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    7. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    8. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    9. Songnian Chen, 1996. "Semiparametric efficiency bound for the Type 3 Tobit model under a symmetry restriction," Economics Letters, Elsevier, vol. 50(2), pages 161-167, February.
    10. Escanciano, Juan Carlos, 2023. "Irregular identification of structural models with nonparametric unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 106-127.
    11. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    12. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    13. Aradillas-Lopez, Andres, 2010. "Semiparametric estimation of a simultaneous game with incomplete information," Journal of Econometrics, Elsevier, vol. 157(2), pages 409-431, August.
    14. Tianchen Qian & Constantine Frangakis & Constantin Yiannoutsos, 2020. "Deductive Semiparametric Estimation in Double-Sampling Designs with Application to PEPFAR," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 417-445, December.
    15. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    16. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2016. "Informational content of special regressors in heteroskedastic binary response models," Journal of Econometrics, Elsevier, vol. 193(1), pages 162-182.
    17. Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
    18. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    19. Xu Zheng, John, 1995. "Semiparametric efficiency bounds for the binary choice and sample selection models under conditional symmetry," Economics Letters, Elsevier, vol. 47(3-4), pages 249-253, March.
    20. Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:10:y:2014:i:1:p:17:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.